![]() | ||
2023-12-02 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что 28 ноября 2023 года в ютубе размещена новая лекция Александра Панова: «Эволюция жизни, генетический код и сверхразум» (https://www.youtube.com/watch?v=-B_0Z8Ueo6g).
2023-11-29 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 29 ноября 2023 года представлена статья Пола Тапендена (Paul Tappenden); (paulpagetappenden@gmail.com): «Теоретико-множественная метафизика волновой функции» («A Set-Theoretic Metaphysics for Wavefunction») (arXiv:2311.16130). Теория множеств произвела революцию в философии математики, и она может произвести революцию и в философии физики. В этом контексте свободный электрон во вселенной наблюдателей - это набор элементарных электронов, движущихся по разным траекториям, каждый в элементарной параллельной вселенной. Для любой области в среде наблюдателей, которая включает часть волновой функции электронов окружающей среды, существует подмножество элементарных электронов, расположенных в параллельных элементарных областях. Декогеренция индуцирует эвереттовское ветвление как разбиение волновой функции на подмножества, мерами которых являются объективные вероятности квазиклассических событий внутри ветвей. Фаза возникает в результате взаимодействий между элементарными вселенными, как и в теории многих взаимодействующих миров, разница в том, что среда наблюдения состоит из множества миров. Эта среда содержит суперпозиции в виде наборов конфигураций элементарных частиц.
2023-11-23 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что 22 ноября 2023 года в arXiv.org размещена статья Лоренцо Пьери (Lorenzo Pieri) из Университета
2023-11-10 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 8 ноября 2023 года представлена статья Луиса К. Барбадо, Флавио Дель Санто (Luis C. Barbado, Flavio Del Santo) из Института квантовой оптики и квантовой информации (IQOQI) Австрийской академии наук (Австрия), физического факультета Венского университета (Австрия), группы прикладной физики Женевского университета, Университета конструкторов в Женеве (Швейцария): «Об игре в богов: ошибочность много-мировой интерпретации» («On playing gods: The fallacy of the many-worlds nterpretation»); (arXiv: 2311.03467). Авторы утверждают: «Одной из наиболее популярных интерпретаций квантовой теории, по-видимому, сегодня является так называемая многомировая интерпретация (MМИ)». Далее они приводят «методологический аргумент», опровергающий, по их мнению, ММИ. Их критика, однако, не вдается в технические детали какой-либо версии MМИ, но в тоже время носит «более общий и радикальный характер». Доказывается, что целый класс теорий, «ярким примером» которых является MМИ, не удовлетворяет некоторым основным принципам науки. Проблема подходов, подобных MМИ, заключается в том, что для воспроизведения наблюдаемых эмпирических данных о любом конкретном результате квантового измерения они требуют в качестве молчаливого предположения, что теория действительно применима к сколь угодно большому диапазону явлений и, в конечном счете, ко всем явлениям. Авторы называют эту логическую ошибку циклом холистического вывода и показывают, что это делает MМИ несостоятельной и обрекает ее на опровержение. «В конкретном случае MМИ, по-видимому, существует почти религиозное чувство, которое воодушевляет ее сторонников верой в то, что все существующее является единым, “простым”, неизменяемым, элегантным математическим объектом, который предположительно живет в абстрактном гильбертовом пространстве. С этой точки зрения, все, что мы наблюдаем и переживаем, включая пространство в котором мы движемся и живем, было бы просто вытекать из единственной “реальной” сущности – универсальной волновой функции».
2023-11-10 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 9 ноября 2023 года представлена статья Алексея В. Ткаченко (Alexei V. Tkachenko) из Центра функциональных наноматериалов в Брукхейвенской национальной лаборатории (США): «Принцип максимальной энтропии как постулат квантовой механики» («Maximum Entropy Principle as Postulate of Quantum Mechanics»); (arXiv: 2311.04893). Даже спустя столетие после формулировки квантовой механики (QM) коллапс волновой функции (WFC) остается спорным аспектом теории. Например, Дж. фон Нейман считал, что WFC в конечном счете вызывается сознательным наблюдателем. По мнению автора, в некотором смысле, эта точка зрения была предшественницей многомировой интерпретации QM Х. Эверетта. Декогеренция, вызванная окружающей средой, предложила частичное решение, проиллюстрировав, как унитарная эволюция в открытой квантовой системе может привести к эффективному WFC внутри ее компонентов. Однако этот подход страдает от круговых рассуждений и не приводит к самосогласованной переформулировке QM. Автор вводит модифицированный набор постулатов QM, которые исключают как WFC, так и вероятностное правило Борна. Они заменяются более слабым постулатом, определяющим условные вероятности для взаимосовместимых наблюдений, который может быть интерпретирован как принцип максимальной энтропии. В заключении автор отмечает, что эта статья была бы неполной без обсуждения кота Шредингера, возможно, наиболее (неправильно) используемой метафоры для QM. Шредингер попытался представить себе ситуацию, когда макроскопическая биологическая система запутывается в атоме. Однако предлагаемая реализация - счетчик Гейгера, который запускает выброс ядовитого газа, - на самом деле не позволила бы достичь этого. Это был бы каскад необратимых процессов в открытой системе, каждый из которых приводил бы к почти немедленной декогеренции. Таким образом, проблема становится по существу классической, как только фотон попадает на детектор. Если изменить настройку Шредингера (или связанный с этим эксперимент "Друг Вигнера") чтобы действительно связать квантовую систему с живым или сознательным существом, типичное время декогеренции в нормальных условиях все равно было бы на много порядков короче, чем любая биологически значимая временная шкала. При этом сознание, вероятно, не является исключительным свойством биологических систем. Интерфейс между обратимыми квантовыми вычислениями и более традиционными необратимыми или его интеграция с системами искусственного интеллекта - это вопрос ближайшего будущего. Парадигма декогеренции обеспечила бы естественную основу для описания их сосуществования.
2023-10-24 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что:
2023-10-21 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в журнале «Математические структуры и моделирование» 2023. N3 (67), (стр. 4 - 15) опубликована новая статья А.К. Гуца из Субтропического научного центра Российской академии наук и Международного инновационного университета (Сочи, Россия): «Конструирование механизма, осуществляющего квантовые переходы в прошлое». Аннотация. “В статье решается задача обоснования работы квантовой машины времени по переходу в другие исторические эпохи. Прошлая историческая эпоха описывается как траектория в суперпространстве Уилера, представляющая пространство-время с замедленным темпом времени по отношению к нашей эпохе. Она заполнена призрачной материей, т.е. материей с нулевым тензором энергии-импульса. Запутывание нашей материи и призрачной порождает кротовую нору из одной эпохи в другую”.
2023-10-11 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 11 октября 2023 года представлена работа Филиппа Страсберга, Йозефа Шиндлера (Philipp Strasberg, Joseph Schindler) из Автономного университета Барселоны (Испания): «Срезание дерева: возникающая структура ветвей и правило Борна в Мультивселенной» («Shearing Off the Tree: Emerging Branch Structure and Born’s Rule in the Multiverse»); (arXiv:2310.06755). Теория декогеренции показала, что после взаимодействия унитарной системы с детектором компоненты волновой функции, принадлежащие различным результатам измерений, ведут себя классически для всех практических целей. После второго измерения каждый предыдущий компонент создает следующий набор компонентов с классическим поведением и так далее и тому подобное, в конечном итоге генерируя набор экспоненциально многих декогерентных ветвей, в которых «все происходит». Однако, только в редких случаях прямо признается, что приведенная выше картина является предположением. Фактически, в настоящее время нет научных доказательств, подтверждающих его точность для L ≫ 1 (L — число измерений). С помощью четкого контрпримера показывается, что эта картина действительно неверна для L ≫ 1. Дерево многих миров имеет нетривиальную и потенциально богатую структуру, где возможно, чрезвычайно малое подмножество ветвей декогерируется и допускает классическую интерпретацию. Значительная часть (часто даже подавляющее большинство) ветвей демонстрирует максимально сильные интерференционные эффекты. Это означает, что как сторонникам, так и противникам много-мировой интерпретации (ММИ) необходимо пересмотреть свою аргументацию. Более того, есть некоторые свидетельства того, что правило Борна может быть обязательно эмерджентным для всех классических наблюдателей. Однако это, безусловно, требует дальнейшего тщательного изучения. Хотя остается много открытых вопросов, наиболее важным преимуществом настоящего подхода является демонстрация того, что фундаментальные аспекты MМИ могут быть изучены, используя только уравнение Шредингера (в нерелятивистском контексте) без приближений или дополнительных метафизических постулатов.
2023-10-11 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 11 октября 2023 года размещена статья Эрве Цвирна (Herve Zwirn) из Университета Париж-Сакле и Университета Париж 7 (Франция): «Дружественный солипсизм как максимально перспективная интерпретация» («Convivial Solipsism as a maximally perspectival interpretation»), (arXiv:2310.06815). Автор продолжает развивать концепцию Дружественного солипсизма (ДС); доказывает, что она является перспективной интерпретацией квантовой механики. Перспективная интерпретация подразумевает, что истина соотносится с наблюдателем; “то, что истинно, зависит от того, где вы сидите”. В ДС эмпирическая реальность и связанный с ней вектор состояния, результаты, полученные в результате наблюдений, феноменальная реальность - все это строго конфиденциально относительно наблюдателя. Восприятие результата измерения производится случайным образом среди различных возможных результатов соответствующей суперпозиции вектора состояния и вероятность задается правилом Борна. Сознание наблюдателя цепляется за ветвь, соответствующую этому результату. Как только сознание привязано к одной ветви, оно будет привязываться только к ветвям, которые являются дочерними по отношению к этой ветви, для всех последующих наблюдений. В ДС допускаются только высказывания от первого лица. Это подразумевает, что каждое предложение должно быть привязано к одному уникальному наблюдателю; т.е. оно должно быть проиндексировано наблюдателем. Каждый наблюдатель живет в своем собственном мире. Вот почему ДС максимально перспективен, несмотря на то, что он дружественный.
2023-10-06 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что на сайте AMCS представлены тезисы доклада Тима Палмера (Tim Palmer) из Оксфордского университета (Великобритания), прошедшей в Оксфорде с 4 по 8 сентября 2023 года конференции «Модели сознания 2023» (https://amcs-community.org/events/moc-4-2023/): «Сознание и свобода воли: физическая гипотеза для отличения людей от искусственного интеллекта» («Consciousness and free will: A physical hypothesis for distinguishing Humans from AI»). Ассоциация математической науки о сознании (Association for Mathematical Consciousness Science [AMCS]) - международная ассоциация ученых и философов, занимающаяся математическими темами в научном изучении сознания. Она направлена на дальнейшее развитие математических подходов в научном изучении сознания, отныне именуемого математической наукой о сознании (MCS).
2023-10-05 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что 28 сентября в Москве в SMART-библиотеке им. Анны Ахматовой с лекцией: «Поиски разума во Вселенной... и за ее пределами» (https://www.youtube.com/watch?v=N5ptEet_jEE) выступил Александр Панов. (Александр Панов, ведущий научный сотрудник НИИ ядерной физики МГУ, руководитель научно-культурного центра SETI при Совете по астрономии РАН, председатель секции «Жизнь и разум во Вселенной» Совета по астрономии РАН.)
2023-09-27 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 26 сентября 2023 года представлена статья Келвина Дж. Макквина, Иэна Т. Дарема, Маркуса П. Мюллера (Kelvin J. McQueen, Ian T. Durham, Markus P. Mueller) из Университета Чепмена (США), Физического факультета колледжа Сент-Ансельма (США), Австрийской академии наук в Вене (Австрия), Института теоретической физики Периметра (Канада): «Построение квантовой суперпозиции состояний сознания с помощью интегрированной теории информации» («Building a quantum superposition of conscious states with integrated information theory»);(arXiv: 2309.13826). У физиков и философов было много спекуляций по поводу того, могут ли состояния сознания накладываться друг на друга и что это вообще могло бы означать. Например, было предпринято множество попыток разобраться в суперпозициях состояний сознания в многомировой и многоразумной интерпретациях квантовой механики. Однако без каких-либо четко определенных критериев для определения, какие физические состояния являются сознательными (и в какой степени), вопрос о том, может ли существовать такая суперпозиция и каково было бы находиться в одном из них, трудно оценить. Согласно интегрированной информационной теории сознания (ИИТ), сознание - это измеримая физическая величина, определяемая интегрированной информацией (Φ), так что количество сознания в системе соответствует ее величине Φ. Используется самый современный формализм ИИT (ИИT 4.0) для анализа простейшей ненулевой системы Φ, известной как диада обратной связи ("диада Шредингера"). Предлагается схема, которая переводит диаду в суперпозицию состояний, которая, согласно ИИT, соответствовала бы суперпозиции сознательных состояний. Авторы показывают, что либо ИИТ ложна, либо простая диада сознательна и может быть легко переведена в суперпозицию сознательных состояний. Затем они определяют простейшую возможную модель коллапса сознания, которая предсказывает, что эта суперпозиция нестабильна и коллапсирует со скоростью, определяемой мерой разницы между наложенными состояниями сознания.
2023-09-26 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 26 сентября 2023 года представлена статья Пола Тапендена (Paul Tappenden); (paulpagetappenden@gmail.com): «Теоретико-множественная метафизика для квантовой механики» («A Set-Theoretic Metaphysics for Quantum Mechanics») (arXiv: 2309.14004). Предложенная автором теоретико-множественная метафизика привносит в физику новое измерение, которое можно рассматривать как актуализированное конфигурационное пространство. Физические объекты в окружении наблюдателя становятся “расширенными” в конфигурационном пространстве в том смысле, что они представляют собой наборы объектов в этом пространстве. Свободный электрон окружающей среды - это набор элементарных электронов на различных траекториях. Макроскопический объект окружающей среды - это набор макроскопических элементарных объектов, каждый из которых состоит из частиц различной конфигурации. Тело наблюдателя - это набор двойников, которые разделяются на когнитивно различные подмножества в контекстах измерений, поэтому наблюдатель до измерения имеет отношение к каждому из наблюдателей после измерения, проводящих различные наблюдения. Как ни странно, это ничего не меняет в повседневной жизни. У разных вариантов будущего есть вероятности, как и раньше, разница лишь в том, что это не вымышленные возможности, а реальность. Действующие лица по-прежнему будут стремиться сделать желаемое ими будущее более вероятным. Однако в теории многих миров есть «слон», которого нельзя игнорировать, известный под названиями квантового самоубийства или квантовой русской рулетки (Тегмарк 1997, Кэрролл 2019). В контексте ситуации квантовой русской рулетки и теоретико-множественной метафизики существует ветвь выживания с объективной вероятностью 1/6 и человек, нажимающий на спусковой крючок, может быть уверен, что он будет человеком, который выжил. Для квантовой статистической механики с актуализированным конфигурационным пространством каждое бывшее “возможное” физическое будущее имеет некоторую вероятность, даже если она очень мала. Всегда есть пути выживания, даже когда вы падаете с самолета без парашюта на палубу, или когда вы задерживаетесь в хосписе с “неизлечимым” раком. “Да, в этом-то и загвоздка. Неужели всех нас ждет какое-то вечное предельное «подвешенное» состояние, а не забвение? Справиться с такой перспективой - задача, с которой нам, возможно, придется столкнуться”. Всвязи с этим, автор цитирует Дэвида Льюиса, который пришел к выводу: ... Идея Эверетта элегантна, но, дай бог, чтобы это было правдой! (Льюис. 2004).
2023-09-25 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 24 сентября 2023 года представлена четвертая (переработанная) версия статьи Чжунхао Лу (Zhonghao Lu) Питтсбургского университета (США): «Личностная идентичность и неопределенность в эвереттовской интерпретации квантовой механики» («Personal Identity and Uncertainty in the Everett Interpretation of Quantum Mechanics») (arXiv: 2209.02639v4). Доказывается, что или в эвереттовскую квантовую механику (EQM) надо вводить скрытые переменные, или придется разрабатывать своего рода “Теорию множества разумов”, которая нарушает принципы физикализма. Автор сообщил, что анонимный рецензент напомнил ему о том, что на Тель-Авивской конференции (2022) несколько участников высказались за введение скрытых переменных в теорию многих миров, а также за введение объективной вероятности, также явно не эвереттовской.” Действительно, это остается возможностью для EQM. Однако после введения в EQM элементов, отличных от эвереттовых, необходимо обосновать, почему EQM следует предпочесть другим интерпретациям квантовой механики. Для тех, кто неохотно усложняет наши физические теории, добавляя в EQM элементы, не относящиеся к Эверетту, остается вариант, основанный на нефизикализме. В этом смысле автор считает, что интерпретация многих разумов (MMI) заслуживает большего внимания, чем она получила в литературе сегодня.
2023-09-22 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 22 сентября 2023 года представлена статья Сабины Хоссенфельдер (Sabine Hossenfelder) из Мюнхенского центра математической философии (Германия): «Квантовая путаница устранена (по крайней мере, я на это надеюсь)» («Quantum Confusions, Cleared Up (or so I hope)») (arXiv: 2309.12299). Представленное исследование основывается на недавно предложенной таксономии интерпретаций квантовой механики (Emily Adlam, Jonte R. Hance, Sabine Hossenfelder, Tim N. Palmer.“Taxonomy for Physics Beyond Quantum Mechanics” arXiv:2309.12293). Используется инструментальтисткий подход (подразумевается, что квантовая механика - это инструмент, который мы используем для предсказаний наших наблюдений) для исследования некоторых часто выдвигаемых утверждений об интерпретациях квантовой механики, особенно тех, которые касаются вопросов локальности. Автор заявляет, что у нее нет личных предпочтений ни к одной из интерпретаций квантовой механики. Все они одинаково полезны и одинаково неудовлетворительны. В основе разногласий физиков лежит путаница терминологии, Вавилонская башня, которая разделила “наш народ” (физиков) на тех, кто говорит на языке бомианской Механики и тех, кто понимает только Множество миров (ММИ). Споры идут из-за значения слов, а не из-за физики. В статье рассматриваются некоторые распространенные путаницы в основах квантовой механики. В частности, обсуждается, является ли ММИ локально причинной (это, согласно автору, не так) и является ли механика Бома решением проблемы измерения. ММИ посвящен отдельный объемный раздел. Согласно автору, если кто-то выполняет вычисления в любом подходе ММИ, он должен эффективно заменить постулат Коллапса. К сожалению, новые допущения, которые необходимо добавить, чтобы ММИ работала, часто прямо не заявляются, но неявно появляются в пояснениях о том, что такое наблюдатель. Релевантное свойство наблюдателя во многих мирах ММИ заключается в том, что они все еще могут видеть только один результат эксперимента; неявно предполагается, что наблюдатель не является чем-то, что существует в нескольких ветвях одновременно (а это нуждается в обосновании). Делается вывод, что ММИ точно так же нелокальна, как и Копенгагенская модель. Если Вы можете верить в любое количество других вселенных, сколько пожелаете, но измерение на одном конце волновой функции де-факто покажет что-то о результате на другом конце. Это, в сочетании с невозможностью предсказать результат измерения только по волновой функции, делает Копенгагенскую модель нелокальный, и ММИ ничего в этом не меняет. Правда, возможно сформулировать некоторые варианты моделей многих миров, которые являются локальными, но они нарушают независимость измерений, что следует из теоремы Белла. Примененный инструменталистский подход показывает, что и ММИ и механика Бома нелокальны и решают проблему измерения только частично, точно так же, как Копенгагенская интерпретация.
2023-09-13 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 13 сентября 2023 года представлена работа Энтони Садбери (Anthony Sudbery) из университета Йорка (Англия): «Жизнь и запутанные приключения кота Шредингера» («The life and entangled adventures of Schrodinger’s cat»); (arXiv:2309.06387; лекция, прочитанная в колледже Сент-Кросс, Оксфорд, 10 июня 2017 года на конференции, посвященной природе квантовой реальности). В разделе: «История мысли Шредингера» сообщается, что в 1926 году Шредингер объяснил квантовую механику в терминах волновой функции. В 1935 году он привел иллюстрацию своих взглядов — ситуацию, названную парадоксом «кота Шредингера». В 1952 году он подчеркнул важность волновой функции и, в частности, волнового уравнения. В 1955 году он сказал: “Я действительно верю, что волновая функция (Вселенной) - это все, что существует”. По Садбери, это очень близко к тому, что было опубликовано Эвереттом и одобрено Уилером в 1957 году, и, после популяризации де Виттом в 1971 году, стало известно как “многомировая интерпретация” квантовой механики. В соответствии с этим, суперпозиция живого кота (и счастливого наблюдателя) и мертвого кота (и печального наблюдателя) на самом деле означает, что есть два мира: один, в котором кот жив, и другой, в котором кот мертв. Таким образом, согласно Садбери, Шредингер предвосхитил многомировую интерпретацию. Это отправляет нас к вопросу о значении суперпозиции. Многомировая интерпретация, по-видимому, является способом попытаться разобраться в этом. Но с этим есть проблемы; кто решает, что именно представляет собой “мир”? Садбери «не думает», что существует много миров; есть только один мир, и его состояние - это суперпозиция. Он приходит к выводу, что квантовая вероятность имеет временнýю природу и тождественна со значением истинности в многозначной логике. Автор напоминает, что стандартное представление о коте Шредингера, то есть о коте, который сам по себе находится в суперпозиции живого и мертвого, сводится на нет тем фактом, что на практике это состояние не может возникнуть само по себе, потому что оно постоянно запутывается в окружающей среде, в молекулах в атмосфере, с электромагнитным излучением и так далее. То есть “состояние кота Шредингера” - это состояние изолированной системы: фактическое состояние макроскопического объекта, отделенного от остальной Вселенной, изолированного от любого взаимодействия с чем-либо еще. Итак, возникает проблема: могут ли экспериментаторы на самом деле создавать объекты, которые действительно находятся в суперпозиции в этом смысле? Однако в конце работы Садбери пишет: «Никто не делал этого с котом (пока), но поговаривают о том, чтобы сделать это с живым объектом. В 1996 году группа Вайнленда (Wineland’s group) построила суперпозиционное состояние одного атома, продемонстрированное тем фактом, что пучок этих атомов, пропущенный через две щели, действительно демонстрировал интерференцию... Три года (1999) спустя группа Цайлингера проделала это с большой молекулой. Если вы можете сделать это с большой молекулой, почему бы не с вирусом – вирус жив (вроде как) – и если с вирусом, то почему не с микробом?»
2023-09-12 В «Библиотеке» выставлена статья А.В.Каминского «Субъективные основания квантовой механики» (https://disk.yandex.ru/d/vmxAQp1jdCPDzw ). В авторской аннотации сущностный смысл работы охарактеризован следующим образом: «Редукционистский подход предполагает возможность получить сознание из физических законов. Однако, до сих пор такие попытки не увенчались успехом. В настоящей работе я рассматриваю возможность обратного подхода, и показываю, как на основе формализованного представления о сознании получить квантовую механику».
2023-09-08 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 07 сентября 2023 года представлена статья Эмили Адлам (Emily Adlam) из Института философии Ротмана в Лондоне (Великобритания): «Что означает «(не)абсолютность наблюдаемых событий»?» («What Does’(Non)-Absoluteness of Observed Events’ Mean?»); (arXiv:2309.03171). Автор отмечает, что недавно появился ряд теорем, касающихся «абсолютности возникших событий», и эти результаты иногда использовались для доказательства того, что квантовая механика может включать в себя некую метафизически радикальную неабсолютность, такую как реляционализм или перспективизм. В статье утверждается, что более предпочтительны интерпретации, допускающей несколько результатов для каждого наблюдателя, например, подход Эверетта. Другая возможность - использование чего-то «вроде ретропричинности», но «совершенно особого вида ретропричинности», который позволил бы избежать ряда распространенных возражений против этого подхода. Автор приходит к выводу, что теоремы о неабсолютности могут сыграть важную роль в содействии достижению приемлемого решения проблемы измерения.
2023-09-08 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 7 сентября 2023 года представлена статья Ганса Кристиана Оттингера (Hans Christian Öttinger) из ETH (Швейцарской высшей технической школы в Цюрихе (Швейцария): «Двухмировая интерпретация квантовой механики» («Two-Worlds Interpretation of Quantum Mechanics»); (arXiv:2309.03151). По мнению автора, стохастическая природа квантовой механики более естественно отражается в «билинейном двухпроцессном» представлении матриц плотности, а не в квадратах волновых функций. Это предложение сопровождается «замечательным» изменением механизма запутанности: запутанность возникает не в результате суперпозиции волновых функций, а в результате «билинейной структуры матриц плотности». Несмотря на лингвистическое сходство между двухмировой и многомировыми интерпретации квантовой механики, это очень разные взгляды. В отличие от многомировой интерпретации с разветвленной структурой, комбинация или наложение двух миров, или, лучше, двух полумиров, в представленной интерпретации, ограничивает поведение единого полного мира. С точки зрения многих миров, «мир» часто заменяется словом «вселенная», тогда как во взаимосвязи двух миров в представленной концепции мы имеем дело с двумя случайными процессами в гильбертовом пространстве квантовой системы. Эти два процесса строго регулируются классической теорией вероятности - теории, где вероятность является онтической характеристикой квантовой теории. Двое «полумиров» — это то, что в конечном итоге существует, и они «играют» вместе, чтобы охарактеризовать квантовое состояние «полного мира», включая запутанности. Предполагается, что связь между двумя «полумирами» может быть гравитационным эффектом.
2023-09-07 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 7 сентября 2023 года представлена статья Вишала Джонсона, Реймара Лейке, Филиппа Франка, Торстена Энслина (Vishal Johnson, Reimar Leike, Philipp Frank, Torsten Enßlin) из Института астрофизики Макса Планка в Гархинге и Мюнхенского университета Людвига-Максимилиана (Германия): «Квантовые измерения и объективная классическая реальность» («Quantum Measurement and Objective Classical Reality»): (arXiv:2309.02764). Авторы продолжают исследовать квантовое измерение в контексте унитарной квантовой механики Эверетта и появления “объективной классической реальности”. Квантовая система (сигнал) измеряется наблюдателем. Для того чтобы процедура измерения была единой, требуется, чтобы информация о текущем состоянии наблюдателя была передана в другую систему (окружающую среду) таким образом, чтобы не нарушалась теорема о недопустимости удаления (согласно которой при наличии двух копий некоторого произвольного квантового состояния невозможно удалить одну из копий; это обращенная во времени теорема о запрете клонирования, которая гласит, что произвольные состояния не могут быть скопированы). Если каждый из наблюдателей сам по себе является классическим объектом, который декогерирует, то получается сильно разветвленная сеть состояний, которые все согласуются друг с другом. Это придает стабильность декогерентной сети состояний и, соответственно, “объективной классической реальности”, поскольку для удаления информации о состоянии сигнала, все системы, с которыми он взаимодействовал, должны объединиться, чтобы «сговориться» и отменить эту корреляцию.
2023-08-31 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 23 августа 2023 года размещена статья Яна Амбьерна и Ёсиюки Ватабики (Jan Ambjorn, Yoshiyuki Watabiki) из Копенгагенского университета (Дания), Университета Неймегена (Нидерланды), Токийского технологического института (Япония): «Вызвано ли нынешнее ускорение Вселенной слиянием с другими вселенными?» («Is the present acceleration of the Universe caused by merging with other universes?»); (arXiv:2308.10924). Авторы показывают, что, позволяя (в модели) нашей Вселенной слиться с другими вселенными, можно придти к модифицированным уравнениям Фридмана, которые объясняют современное ускоренное расширение нашей Вселенной. Рассматривается космологическая постоянная (λ), гравитационная постоянная (g), которая фигурирует в модели просто как константа связи, некоторым образом отражающая “плотность” дочерних вселенных, “окружающих” нашу Вселенную. Однако роль этой константы связи (g) в более крупной теории - теории Мультивселенной, авторы «пока не смогли разгадать».
2023-08-22 В Библиотеке выставлена статья ведущего научного сотрудника МЦЭИ Ю.В.Никонова «О моделировании когнитома на примере этанолзависимой функциональной системы» https://disk.yandex.ru/i/WoWYLPD-JC36nA
2023-08-21 В Трудах VIII Всероссийской конференции: «Нелинейная динамика в когнитивных исследованиях – 2023» (Нижний Новгород, ИПФ РАН, 2023 г., стр. 97 – 99) опубликована статья ведущего научного сотрудника МЦЭИ Ю.В. Никонова (ФГБУЗ МСЧ № 59 ФМБА России; e-mail: nikyuv@yandex.ru): «О моделировании когнитома на примере этанол-зависимой функциональной системы». В работе рассматриваются параллели между гиперсетевой теорией мозга и сознания (ГСТМ) Константина Анохина, и концепцией внутренних и внешних наблюдателей Марцина Новаковского (2023). И ГСТМ и концепция внутренних и внешних наблюдателей оперируют симплициальными комплексами и когомологией пучков. Причем, у Новаковского для формализации «внутреннего наблюдателя» применяются пучки - «снопы» запутанных квантовых историй. В его модели реальности утверждается, что события, как строительные блоки пространства-времени, существуют только у наблюдателей. Поэтому причинно-следственная связь справедлива для внешних наблюдателей, но не является необходимой для наблюдателей внутренних. Описание свойств внутреннего наблюдателя хорошо коррелирует со свойствами биологической памяти в трактовке К.В. Анохина: 1. Вырожденность – одно и тоже событие хранится в памяти в виде множественных неидентичных копий. 2. Нерепликативность - каждое ее следующее воспроизведение отличается от предыдущего, вовлекая перекрывающиеся, но отличающиеся популяции синапсов и нейронов. 3. Нерепрезентативность – след памяти не является точным нервным отражением событий внешнего мира. Описанное свойство вырожденности дает высокую стабильность биологической памяти и ее способность к восстановлению. В процессе репликации памяти мы имеем дело с переходами между «неидентичными копиями нейронных систем», которым может соответствовать динамика информации в запутанных историях (запутанных во времени) по Френку Вильчеку и Джордану Котлеру (2016). В этом контексте предлагается новый взгляд на КОГи (когнитивные группы) по К.В. Анохину на примере этанол-зависимой функциональной системы. Предполагается, что КОГи мозга-психики человека — частный случай соответствующих структур наблюдателей, в том числе наблюдателя - искусственного интеллекта и наблюдателя - космического субъекта по Владимиру Лефевру.
2023-08-19 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщил, что в архиве электронных препринтов 11 августа 2023 года размещена статья Дона Вайнгартена (Don Weingarten, donweingarten@hotmail.com): «Вакуумное разветвление, Темная энергия, Темная материя» («Vacuum Branching, Dark Energy, Dark Matter») (arXiv: 2308.05569). Начиная с многомировой интерпретации квантовой механики Эверетта-Девитта, был выдвинут ряд предложений о том, как вектор состояния квантовой системы может в любой момент разделиться на ортогональные ветви, каждая из которых демонстрирует приблизительно классическое поведение. В этих рамках автор развивает идеи своей более ранней версии настоящей работы (cм. PS), в которой предлагалось разложение вектора состояния на ветви путем нахождения минимума меры среднеквадратичной квантовой сложности ветвей в разложении ветвей. Более ранняя версия здесь упрощена путем замены определения сложности, основанного на физическом вакууме, определением, основанным на чистом вакууме. Как следствие этой замены, сам физический вакуум, по прогнозам, ветвится, давая ответвления с плотностями энергии, немного превышающими плотность неразветвленного вакуума. При определенных условиях оказывается, что вакуумные ветви имеют комбинацию плотностей темной энергии и темной материи, но не содержат дополнительных частиц. Из чего состоит человеческий опыт в этом контексте? Или, опыт, который, предположительно, имеют многие, а возможно, и все другие живые существа? Простая гипотеза здесь заключается в том, что каждое событие ветвления само по себе является переживанием. Переживание в точности равно самому событию ветвления. Переживание человека в любой момент времени — это просто самое последнее разветвляющееся событие в неврологической схеме этого человека. Свободная воля человека — это процесс случайного выбора последующей ветви при каждом событии ветвления. Однако, возможность того, что разветвления в вещах, которые не являются живыми, также составляют опыт, кажется практически невозможной для человеческого воображения. Нет никаких оснований предполагать, что опыт, полученный вне живых существ, должен быть каким-либо образом достаточно похож на человеческий опыт, чтобы его можно было вообразить. И нет никакого способа либо для подтверждения, либо для опровержения гипотезы о том, что все разветвляющиеся события вне живых существ также представляют собой переживания. Это подтверждается только его естественной ролью в рамках, поддерживающих гипотезу о том, что ветвление является источником макроскопической реальности. Описание временной эволюции ветвления для системы с менее чем максимальной сложностью, оставляет открытой возможность того, что в некоторых «ошеломляюще редких» случаях, в системе, достигшей максимальной сложности, отдельные ветви все еще могут рекомбинировать. Какой опыт сопровождал бы подобные мероприятия? Предположительно, нечто совершенно непохожее на любой нормальный человеческий опыт и, соответственно, невозможное для человеческого воображения.
2023-08-19 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщил, что в архиве электронных препринтов 11 августа 2023 года размещена статья Серхио Э. Агилар-Гутьерреса, Аяна К. Патра, Хуана Ф. Педраса (Sergio E. Aguilar-Gutierrez, Ayan K. Patra, Juan F. Pedraza) из Левенского Университета (Бельгия) и Института теоретической физики UAM/CSIC в Мадриде (Испания): «Запутанные вселенные в dS-клиновой голографии» («Entangled universes in dS wedge holography»); (arXiv: 2308.05666). Авторы разрабатывают новую настройку в рамках голографии мира на бране для описания пары связанных и запутанных равномерно ускоренных вселенных. Модель состоит из двух бран, встроенных в пространство AdS (Анти-де-Ситтера). Показывается, что гравитация dS (де Ситтера) может стать эффективной теорией мира на бране при условии учета флуктуаций, поперечных бране. Изучается энтропия голографической запутанности между бранами, а также голографическая сложность. Предложенная структура предоставляет новые тестовые площадки для понимания концепций квантовой информации в dS-пространстве и dS-голографии.
2023-08-01 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 1 августа 2023 года представлена статья Али Барзегар, Эмилии Маргони, Даниэле Орити (Ali Barzegar, Emilia Margoni, Daniele Oriti) из Мюнхенского университета Людвига-Максимилиана (Германия) и Университета Флоренции/Университета Женевы/Университета Пизы: «Минималистский взгляд на свободу воли в физике» («A minimalist account of agency in physics») (arXiv: 2307.16054).
2023-07-27 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 26 июля 2023 года представлена статья Юджина Ю.С. Чуа, Эдди Кеминг Чена (Eugene Y. S. Chua, Eddy Keming Chen) из Калифорнийского университета в Сан-Диего (США): «Декогеренция, ветвление и правило Борна в Эвереттовской Мультивселенной со смешанными состояниями» («Decoherence, Branching, and the Born Rule in a Mixed-State Everettian Multiverse»); (arXiv:2307.13218). В квантовой механике Эверетта (EQM) обоснования правила Борна апеллируют к «самоопределяющейся неопределенности» или теории принятия решений. Такие обоснования были применены исключительно для Эвереттовской Мультивселенной в чистом состоянии, представленной волновой функцией. Недавние работы в области квантовых основ предполагают, что можно рассматривать Эвереттовскую Мультивселенную со смешанными состояниями, представленную матрицей плотности (смешанного состояния). Рассматривается концепция реализма матрицы плотности (DMR) и старого реализма волновой функции (WFR). Эвереттианские версии DMR и WFR обозначены как DMRE и WFRE соответственно (эта версия DMRE называется Вентакулюсом). Предполагается что эвереттианское понимание декогеренции и ветвления, а также обоснования правила Борна применимы как к WFRE, так и к DMRE. Следовательно теоретические преимущества DMR верны и для EQM. Однако, получается, что эвереттианцы стоят перед выбором между двумя типами теорий, одна из которых допускает только чистые состояния. для мультивселенной и другая, допускающая также смешанные состояния. Выбор тнории не будет основан на различном понимании ветвящейся структуры или правила Борна, поскольку эвереттианские обоснования в равной степени применимы к обеим теориям, но должны включать некоторые другие теоретические соображения. В любом случае наличие разных версий Эвереттовской квантовой механики - интересный пример эмпирической недоопределенности. Его и возможные последствия - это вопросы, которые автор оставляем для будущей работы.
2023-07-25 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 21 июля 2023 года представлена статья Никодема Поплавского (Nikodem Popławski) из Университета Нью-Хейвена в Бостоне (США): «Гравитационный коллапс с кручением и Вселенная в Черной дыре» («Gravitational Collapse with Torsion and Universe in a Black Hole»); (arXiv: 2307.12190). Рассматривается гравитационный коллапс сферы из жидкости с кручением, который образует черную дыру. Показано, что гравитационное отталкивание кручения предотвращает сингулярность, заменяя ее несингулярным отскоком. Результат - замкнутая вселенная по другую сторону горизонта событий, которая может иметь несколько отскоков. Такая вселенная является колебательной, причем каждый цикл больше предыдущего, пока она не достигнет размера, при котором темная энергия доминирует и расширяется бесконечно. В этом контексте предполагается, что наша вселенная могла возникнуть из черной дыры, существующей в другой вселенной. Иными словами, если черная дыра является мостом Эйнштейна-Розена к новой вселенной по другую сторону ее горизонта событий, то Вселенная (в том числе наша Вселенная) может родиться как дочерняя вселенная в родительской черной дыре, существующей в другой вселенной. Эта гипотеза естественным образом решает информационный парадокс черной дыры: информация о начальном состоянии коллапсирующего вещества не теряется, а проходит через горизонт событий в новую вселенную.
2023-07-25 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 21 июля 2023 года представлена статья Шона М. Кэрролла (Sean M. Carroll) из Калифорнийского технологического института в Пасадене и Института Санта-Фе (США): «Полностью дискретизированная, конечная квантовая механика» («Completely Discretized, Finite Quantum Mechanics»); (arXiv: 2307.11927). Предлагается версия квантовой механики (КМ), отличающаяся дискретным и конечным числом состояний, которая, вероятно, является моделью реального мира. Модель основана на стандартной унитарной квантовой теории замкнутой системы с конечно-мерным гильбертовым пространством. Автор «неявно» полагается на эвереттовский подход к КМ. При таком подходе квантовое состояние рассматривается как всеобъемлющее представление реальности, и оно всегда развивается в соответствии с уравнением Шредингера. Очевидный коллапс волновой функции во время квантового измерения объясняется процессом декогеренции, который расщепляет квантовое состояние на невзаимодействующие ветви, которые впоследствии эволюционируют как независимые миры. Эти миры могут быть хорошо апроксимированы классической эволюцией. В качестве единственного элемента онтологии берется само квантовое состояние, вектор, эволюционирующий в гильбертовом пространстве. Таким образом, для подключения к известным особенностям нашего мира требуется своего рода обратный инжиниринг: переход от чрезвычайно минимального набора данных (собственные значения энергии, амплитуды фактической волновой функции Вселенной) к богатому миру нашего опыта. Надежда состоит в том, что эти минимальные данные однозначно соответствуют возникающей квазиклассической структуре. Дискретная и конечная формулировка реалистической физики, по мнению автора, «не слишком большой отход» от обычной КМ.
2023-07-21 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 21 июля 2023 года представлена статья Евгения Полякова и Натальи Арефьевой (Evgeny Polyakov, Nataliya Arefyeva) из Российского квантового центра в "Сколково", МГУ им. М.В. Ломоносова (Россия): «Исследование квантового хаоса с помощью энтропии декогерентных историй» («Probing quantum chaos with the entropy of decoherent histories») (arXiv: 2307.10269). Квантовый хаос, явление, которое начали изучать в прошлом веке, до сих пор не имеет строгого понимания. Основная идея авторов состоит в том, чтобы ввести определение квантового хаоса по аналогии с классическим определением через расхождение близлежащих траекторий. Квантовые траектории могут быть введены путем подключения системы к окружающей среде. Квантовая среда в данном случае аналогична записывающему устройству. Записанная информация об эволюции открытых квантовых систем (ОКС) называется декогерентной историей. Это похоже по духу на подход к декогерентным историям, также известный как подход согласующихся историй по Роберту Гриффитсу. Показано, что для такой модели производство энтропии декогерентных историй радикально отличается в интегрируемом и хаотическом режимах. Таким образом, энтропия ансамбля квантовых траекторий может быть использована в качестве критерия хаотичности.
2023-07-12 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 11 июля 2023 года размещена статья Франса Р. Клинкхамера (Frans R. Klinkhamer) из Института теоретической физики, Технологического института Карлсруэ (Германия): «Новый тип проходимой червоточины» («New Type of Traversable Wormhole»); (arXiv: 2307.04678). Рассматривается новое решение уравнения гравитационного поля общей теории относительности с проходимой червоточиной - кротовой норой без экзотической материи. Вместо экзотической материи, удерживающей горловину червоточины открытой, решение опирается на трехмерный "дефект пространства-времени". Обсуждается соответствующее решение для червоточин с множественными вакуумными дефектами и возможные экспериментальные сигнатуры "газа" таких червоточин. По мнению автора, многочисленные червоточины с вакуумными дефектами, по-видимому, позволяют путешествовать во времени в обратном направлении.
2023-07-03 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что 28 апреля 2023 года Хейнрих Пас (Heinrich Päs) профессор теоретической физики из Дортмунского технического университета (Германия), автор книги «Единое: как древняя идея определяет будущее физики» («The One: How an Ancient Idea Holds the Future of Physics». 2023), опубликовал работу с кратким изложением своих взглядов: «Все есть одно. Древняя философия монизма и физика квантовой запутанности сходятся во мнении: все сущее есть единое целое». (All is One. The ancient philosophy of monism and the physics of quantum entanglement agree: all that exists is one unified whole. Aeon, 28 April 2023. (https://aeon.co/essays/monist-philosophy-and-quantum-physics-agree-that-all-is-one). «Из всего сущего Одно и из Единого все сущее», - писал греческий философ Гераклит около 2500 лет назад. Он описывал монизм, древнюю идею о том, что все едино – что, по сути, все, что мы видим или переживаем, является аспектом единого целого. Гераклит был не первым и не последним, кто отстаивал эту идею. По мнению автора, это мировоззрение также прямо вытекает из открытий квантовой механики, «сверхъестественной» физики субатомных частиц, которая отличается от классической физики и опыта повседневного мира. Два процесса квантовой физики непосредственно приводят к понятию взаимосвязанной Вселенной и монистической основы природы в целом: «запутанность», природный способ объединения частей в целое (тема Нобелевской премии по физике 2022 года); и «декогеренция», вызванная потерей квантовой информации, и причина, по которой мы так мало сталкиваемся с квантовыми странностями в нашей повседневной жизни. Декогеренция происходит, когда квантовый объект взаимодействует со своим окружением – например, когда частица, подобная электрону, человек-наблюдатель или измерительное устройство, и окружающая среда запутываются. Если квантовый объект представляет собой частицу, существующую в двух разных местах (это возможно, если она принимает форму волны), то каждое из них связано с соответствующим состоянием измерительного устройства, регистрирующего частицу в соответствующем положении. С точки зрения наблюдателя, погруженного в свою собственную реальность (Макс Тегмарк назвал ее «лягушачьей перспективой»), измерительное устройство могло бы описывать две реальности, основанные на математических вероятностях в волновой функции – частица могла бы находиться в положении А с помощью измерительного устройства, наблюдающего это местоположение, или частица могла бы находиться в положении B с помощью другого устройства, записывающего это положение. Открытие Х. Дитриха Зе квантовой декогеренции подтвердило противоречивый взгляд на квантовую механику, предложенный Хью Эвереттом, который стал известен под «вводящим в заблуждение» названием «многомировая интерпретация». Согласно Эверетту и Зе, фундаментальное описание Вселенной — это единое запутанное состояние, описываемое универсальной волновой функцией. Согласно Эверетту, квантовые измерения не дают только один результат. Вместо этого все результаты, допустимые в квантовой механике, реализуются, хотя и в параллельных реальностях. Это, как если бы «декогеренция открывала молнию (застежку-молнию; англ. zipper) между параллельными вселенными». Однако на более фундаментальном уровне интерпретация Эверетта описывает не множество классических миров, а скорее единую квантовую вселенную, управляемую универсальной волновой функцией. Хотя возможные реальности накладываются друг на друга в запутанном целом, они раскрываются с точки зрения наблюдателя, который не знает точного состояния окружающей среды, которой, возможно, является вся остальная Вселенная. Если бы гипотетический наблюдатель мог увидеть всю Вселенную снаружи со всеми ее раскрытыми возможностями, космос проявился бы как единый квантовый объект. Это, как говорит Тегмарк, была бы «перспектива с высоты птичьего полета». То, что выглядит как «множество миров» с точки зрения местного наблюдателя, на самом деле представляет собой единую уникальную Вселенную с глобальной точки зрения (например, того, кто мог бы смотреть извне на всю Вселенную).
2023-07-03 Ведущий научный сотрудник МЦЭИ А.М.Костерин сообщил, что 21.06.23 известный философ и культуролог М.Н.Эпштейн опубликовал блог «Может ли быть субъектность у искусственного разума?» (https://snob.ru/profile/27356/blog/3001165/?fbclid=IwAR1VJyvkCy4CXWCqRNAHKh39M1ig49hSeqENuQhOAcWEIAtG_qy7xo6wHPM ). Комментируя эвереттический аспект этой публикации, А.М.Костерин отмечает её «проективный характер», поскольку автор пишет не о современном нам ИИ, а о том, который может быть создан в будущем. На современном этапе можно предположить, что субъектность у ИИ есть, но она не более развита, чем у простейших живых существ. Для обретения разумной субъектности, ИИ должен создаваться на базе полноценного квантового компьютера, так как только на такой основе ИИ может оперировать с многомировыми смыслами. Осознание разумом смыслов может существовать только как многомировая рефлексия. Об этом сам М.Н.Эпштейн писал в статье «Коты, смыслы и вселенные».( https://docs.yandex.ru/docs/view?url=ya-disk-public%3A%2F%2FlApOIpaY35RX8pqF0Fvzo1O0MXniofnftLmBZF9wzp4%3D&name=MEpsh250516.pdf ).
2023-06-28 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 27 июня 2023 года размещена статья Желун Чжан, И-Чжуан Ю (Zhelun Zhang, Yi-Zhuang You) из Пекинского университета (Китай), Гарвардского университета (США), Калифорнийского университета в Сан-Диего (США): «Наблюдение за котом Шредингера с помощью искусственного интеллекта: Зарождающаяся классика из информационного "бутылочного горлышка"»
2023-06-28 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 28 июня 2023 года представлена новая статья Овидиу Кристинел Стойка (Ovidiu Cristinel Stoica) из Национального института физики и ядерной инженерии в Бухаресте (Румыния): «Связь между волновой функцией и трехмерным пространством подразумевает множество миров с локальными возможностями и вероятностями» («The Relation between Wavefunction and 3D Space Implies Many Worlds with Local Beables and Probabilities»); (Представлено на семинаре MМИ, Тель-Авивский университет, 18-24 октября 2022 г.; arXiv: 2306.15417; Quantum Reports 5(1): 102-115. 2023). Данная статья — одна из ряда работ автора по много-мировой интерпретации квантовой механики (ММИ). Утверждается, что волново-функциональная формулировка квантовой теории поля неявно сопровождается естественной интерпретацией в трехмерном пространстве в виде сосуществования классических состояний, что подразумевает существование множества миров. Автор показывает, что эти состояния распределяются в соответствии с правилом Борна. По его мнению, его версия ММИ вполне соответствует свойствам квантовой гравитации. Квантовая гравитация, в частности, предполагает, что сингулярность Большого взрыва может объяснить временную асимметрию ветвящейся структуры, поскольку в сингулярности Большого взрыва состояние не диссоциировано, все его компоненты имеют одинаковую геометрию и постоянные поля. По мере эволюции Вселенной она распространяется на все большее и большее количество макросостояний, поэтому волновая функция разветвляется все больше и больше.
2023-06-15 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 28 апреля 2023 года представлена статья Шарля Александра Бедара (Charles Alexandre Bédard) из Университета итальянской Швейцарии (Швейцария): «Обнаружена телепортация» («Teleportation Revealed»); (arXiv: 2304.14959; Quantum Rep. 2023. 5(2), 510-525. 13 Jun 2023). В представлении Шредингера критерий локальности Эйнштейна (альтернатива концепции мгновенного или "нелокального" действия на расстоянии) не выполняется глобальным вектором состояния, что предотвращает локализацию параметров. В 2000 году Дойчем и Хейденом доказано, что их можно локализовать в представлении Гейзенберга. Автор «заново раскрывает и развивает» решение Дойча и Хейдена. Телепортация описывается в представлении Гейзенберга, утверждается, что “телепортируются” более двух вещественно-значных параметров, поскольку в описание включены контрфактуальные элементы. Любой, кто считает само собой разумеющимся, что общение между Алисой и Бобом включает в себя “чисто классическую информацию”, обманут. Классическая область - это квантовая; классический канал связи - это канал, устойчивый к декогеренции и реализуемый в цепной реакции в квантовых системах. Объяснение классической коммуникации на основе некоторого взаимодействия внутри квантовых систем на первый взгляд может показаться радикальным. Но верно и обратное. Если кто-то утверждает, что квантовая теория не является универсальной, то он должен объяснить, где находится ее граница и почему. Программа Эверетта серьезно относится к квантовой теории и, при отсутствии необходимости, не вводит границы ее применимости. Унитарность не полностью проясняет объяснение телепортации в картине Шредингера. Такое объяснение возможно только в рамках Гейзенберговской картины унитарной квантовой теории. Те, кто привык к унитарной квантовой теории (т.е. квантовой теории Эверетта), увидят аргументы в пользу принятия и дальнейшего развития картины Гейзенберга. Но те, кто все еще не уверен в том, как “интерпретировать” квантовую теорию, то есть все еще решает, нужно ли усекать унитарную квантовую теорию, объединять с другой теорией или каким-либо образом дополнять, увидят в предлагаемом объяснении телепортации аргументы как в пользу картины Гейзенберга, так и в пользу унитарной квантовой теории, поскольку их объединение решает проблему локальности передачи информации при телепортации.
2023-06-14 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 14 июня 2023 года размещена статья Аурелиана Дрезе (А. Drezet) из университета г. Гренобля (Франция): «Элементарное доказательство того, что квантовая Мультивселенная Эверетта нелокальна: локальность Белла и симметрия ветвей в многомировой интерпретации» («An Elementary Proof That Everett’s Quantum Multiverse Is Nonlocal: Bell-Locality and Branch-Symmetry in the Many-Worlds Interpretation») (arXiv: 2306.07794). Теория многих миров или теория Мультивселенной Эверетта (многомировая интерпретация - ММИ) — это попытка найти альтернативу стандартной копенгагенской интерпретации квантовой механики. Теорию Эверетта часто называют локальной в смысле Белла. Автор считает, что это не так, и разрешает противоречия, подробно проанализировав теорему о нелокальности Гринбергера - Хорна - Цайлингера. Обсуждаются и сравниваются различные понятия локальности, «часто смешиваемые в эвереттовской литературе», делается попытка объяснить природу путаницы. Фундаментальная проблема по А. Дрезе: правы ли мы, присваивая вероятности событиям в ММИ? Четкого ответа все еще нет, автор считает, что это невозможно без добавления новых физических аксиом, чуждых чистой унитарной теории Эверетта. Примером такой попытки является модель множества разумов, предложенная им в 2021, но она опирается на «очень спекулятивные» идеи о разумах и начальных условиях в квантовой вселенной. Более серьезным подходом, возможно, является интерпретация многих бомовских путей. При таком подходе механика Бома, то есть теория скрытых переменных является фундаментальной, и мы можем определить "Мультивселенную", взяв очень большую вселенную или их множество, включающее множество разделенных (и независимых) копий одной и той же подсистемы. Каждая подсистема описывается одной и той же волновой функцией Ψ (с точностью до некоторого перемещения в пространстве). Поскольку у нас есть очень большой ансамбль или "коллектив" вселенных, и поскольку бомовская механика требует дополнительных начальных условий для частиц или других полевых объектов, то мы можем применить закон больших чисел, постулируя в качестве начального условия всей Мультивселенной, что мера вероятности–типичности для этих объектов задается правилом Борна. В системе де Бройля–Бома или согласно механике Бома, это имеет смысл, и, если число копий N очень велико, можно восстановить квантово-статистические предсказания. Более того, хорошо известно, что теория де Бройля–Бома нелокальна по Беллу, и это означает, что интерпретация многих бомовских путей также должна быть нелокальной (Mojtaba Ghadimi, Michael J. W. Hall, Howard M. Wiseman. 2018). Это еще раз опровергает утверждения «эвереттийцев» о локальности. В конце этого анализа автор утверждает, что теория Эверетта либо неверна, либо нелокально-причинна.
2023-06-07 Ведущий научный сотрудниу МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 7 июня 2023 года представлена статья Пола Тапендена (Paul Tappenden); (paulpagetappenden@gmail.com): «Теория множеств и множество миров» («Set Theory and Many Worlds») (arXiv: 2306.03583; более ранняя версия была опубликована в Quantum Reports 2 марта 2023 г. Существенные изменения внесены на страницах 8 и 15-17). Тель-Авивская конференция 2022 года, посвященная много-мировой интерпретации квантовой механики, высветила множество различий между теоретиками. Если многомировая интерпретация квантовой механики когда-либо станет общепринятой, сначала должно быть достигнуто согласие относительно того, что такое многомировая интерпретация. Существует даже спор о том, как это назвать; должны ли мы мыслить в терминах единого ветвящегося мира или разделяющегося множества миров? Очень существенная дихотомия существует между эвереттовским делением-расщеплением (fission; splitting) и дивергенцией Сондерса-Уоллеса-Уилсона. При расщеплении у наблюдателя может быть несколько вариантов будущего, тогда как при дивергенции у него всегда будет одно будущее. Дивергенция была специально введена, чтобы решить проблему неопределенности до измерения в теории Эверетта, которая, как повсеместно считается, отсутствует для деления. Тапенден утверждает, что действительно существует неопределенность в отношении будущих наблюдений до расщепления, пока объективная вероятность является свойством ветвей Эверетта, что становится возможным, если вселенная представляет собой множество, а ветви - подмножества с мерой вероятности. Любой макроскопический объект в нашем окружении становится набором изоморфов с различными микроскопическими конфигурациями, каждый в элементарной вселенной (элементарной в теоретико-множественном смысле). Это похоже на теорию многих взаимодействующих миров, но наблюдатель обитает во множестве миров, а не в отдельном мире. У наблюдателя много элементарных тел.
2023-06-06 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 6 июня 2023 года размещена статья Сок Хен Ли и М.С. Ким (Seok Hyung Lie, M.S. Kim) из Наньянского технологического университета (Сингапур), Имперского колледжа Лондона (Великобритания): «Квантовые операции с осью времени в наложенном направлении» («Quantum operations with the time axis in a superposed direction») (arXiv:2306.02755). В квантовой теории процессы могут обладать симметрией при обращении направления времени. Однако недавние открытия, касающиеся неопределенного причинно-следственного порядка квантовых процессов, предполагают, что могут существовать и другие, более общие преобразования симметрии времени, помимо полного его обращения. Авторы вводят расширенную концепцию обобщенной «матричной транспозиции», которая учитывает общие унитарные преобразования будущего и прошлого гильбертовых пространств квантовой операции, позволяя определенно расположить ось времени в наложенном («superposed») направлении, что обобщает ранее изученное «неопределенное направление времени», то есть суперпозицию прямой и обратной временной эволюции. Динамика квантовых систем рассматривается как сеть событий, состоящая из унитарного оператора, который может быть интерпретирован как тензор. Отмечается совместимость множества временных осей в двусторонних квантовых взаимодействиях. Сами авторы отмечают, что их подход перекликается по духу с подходом, известным как событийная вселенная (Одед Шо с соавторами, 2022), понимающим вселенную как древо событий, за исключением того, что в данной работе "события" являются унитарной эволюцией, или квантовыми каналами. Они ссылаются на работы Котлера с соавторами [2016, 2020], Кастеллани [2021] и Диаса [2021], оперирующие квантовыми, в том числе запутанными историями, которые хорошо соотносятся с многомировой интерпретацией квантовой механики. Важно, что концепция авторов «практически» не допускает обмена информацией между двумя системами, совместимыми с противоположными временными направлениями. Задается вопрос, что, если мы не будем предполагать, что существует пространство-время со знакомой пространственно-временной структурой? Что, если существование универсальной оси времени не задано в качестве дополнительных данных за пределами гильбертова пространства о вселенной?
2023-06-02 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 2 июня 2023 года размещена статья Джона Л. Хейлброна и Карло Ровелли из Калифорнийского университета в Беркли (США), Университета Экс-Марсель, Университета Тулона (Франция), Университета Западного Онтарио (Канада) и Института периметра в Ватерлоо (Канада): «Недооцененная Матричная механика: запоздалая Нобелевская премия Макса Борна» («Matrix Mechanics MisPrized: Max Born’s Belated Nobelization»); (arXiv: 2306.00842). Авторы рассматривают оценки вклада матричной механики и лично Макса Борна в формулировку квантовой механики. Макс Борн получил Нобелевскую премию за вероятностную интерпретацию волновой функции, предложенную им в 1926 году, только в 1954 году. Мотивация для получения запоздалой премии должна быть такой же неожиданной для современного физика, как награда Эйнштейну за формулу фотоэффекта, а не за теорию относительности. Указывается, что процесс переоценки вклада Борна продолжается в свете недавних интерпретаций квантовой механики (КМ).
2023-05-26 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 26 мая 2023 года размещена статья Вероники Бауманн, Каслава Брукнера (Veronika Baumann, Caslav Brukner) из Австрийской академии наук в Вене, Венского технического университета (Австрия): «Наблюдатели в суперпозиции и принцип отсутствия сигналов» («Observers in superposition and the no-signaling principle»); (arXiv: 2305.15497). Эксперимент с другом Вигнера - это мысленный эксперимент, в котором так называемый супернаблюдатель (Вигнер) наблюдает за другим наблюдателем (другом), который выполнил квантовое измерение в физической системе. В этой установке Вигнер рассматривает систему "друг" и потенциальные степени свободы, участвующие в измерении "друга", как единую квантовую систему. Как правило, измерение Вигнера изменяет внутреннюю запись результата измерения друга таким образом, что после измерения супернаблюдателем результат, сохраненный в регистре памяти наблюдателя, больше не совпадает с результатом, полученным другом при ее измерении, т.е. до того, как он был измерен. Авторы описали случай, когда у друга может быть несколько регистров памяти, доступных для хранения-получения результатов, каждый из которых затем измеряется Вигнером на некоторой фиксированной основе. Друг мог бы иметь представление об общем изменении этих регистров памяти (например, о вероятности изменения записей во время измерения Вигнера), не имея постоянного представления об отдельных результатах измерения. Смоделировано изменение памяти друга и обнаружено, что, даже если друг имеет лишь очень ограниченное представление об изменении своей памяти, это представление может быть использовано удаленным наблюдателем (Бобом) для подачи сверхсветового сигнала другу и Вигнеру. Авторы восприняли это как веский аргумент против того, что друг может обладать такой осведомленностью, а это означает, что друг не только не может знать о конкретном результате, который он наблюдал до измерения Вигнера, как только его память изменилась, он также не может осознавать это изменение.
2023-05-24 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 24 мая 2023 года размещена статья Джулиана Барбура (Julian Barbour); (Великобритания): «Квант без кванта» («Quantum without Quantum»); (arXiv:2305.13335). Статья посвящена 70-летию Дэвида Дойча (на странице https://dd70th.weebly.com друзья и коллеги Дэвида (среди них Джулиан Барбур, Харви Браун, Влатко Ведрал, Кьяра Марлетто и другие) подготовили видеоролики и тексты. Сам Барбур в своей краткой «заметке» говорит о возможной «избыточности» квантовых волновых функций для объяснения физических эффектов.
2023-05-18 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 15 мая 2023 года представлена статья Эрика Дж. Кавальканти, Андреа Ди Бьяджо, Карло Ровелли (Eric G. Cavalcanti, Andrea Di Biagio, Carlo Rovelli) из Центра квантовой динамики Университета Гриффита (Австралия), Института квантовой оптики и квантовой информации в Вене (Австрия), Сообщества фундаментальных исследований по физике в Лейпциге (Германия), Тулонского университета (Франция), университета Западного Лондона и Института периметра (Канада): «О непротиворечивости относительных фактов» («On the consistency of relative facts»): (arXiv:2305.07343). Лоуренс и др. (2022) представили аргумент, призванный показать, что «относительных фактов не существует» и, следовательно, «реляционная квантовая механика несовместима с квантовой механикой». Авторы это опровергают, анализируя расширенный сценарий мысленного эксперимента друга Вигнера с системой из трех кубитов, в котором рассматривается результирующий набор-список результатов наблюдений из шести величин. Ключевым моментом является то, что, хотя все измерения выполняются каким-либо наблюдателем в каждом цикле эксперимента, нет наблюдателя, относительно которого все они принимали бы сосуществующие значения. Предполагается, что следует воспринимать как осмысленные утверждения о реальности только утверждения, относящиеся к физическим системам. В этом случае элементы списка являются частью реальности относительно каждого наблюдателя, производящего эти измерения, но полный список не является частью реальности, потому что нет наблюдателя, относительно которого все эти наблюдаемые принимают сосуществующие значения.
2023-05-02 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 2 мая 2023 года представлена статья Майкла Э. Куффаро и Стефана Хартманна (Michael E. Cuffaro, Stephan Hartmann) из Мюнхенского центра математической философии, Мюнхенского университета Людвига Максимилиана (Германия): «Взгляд на открытые системы и интерпретация Эверетта» («The Open Systems View and the Everett Interpretation»): (arXiv: 2305.00378; Quantum Rep. 2023, 5(2), 418-425). Утверждается, что те, кто защищает интерпретацию квантовой механики Эвереттом (ММИ) должны принять то, что называется общей квантовой теорией открытых систем (GT), как надлежащую основу для проведения фундаментальных и философских исследований в квантовой физике. GT - это более широкая динамическая структура, чем ее альтернатива, стандартная квантовая теория (ST). Это верно, даже несмотря на то, что GT не вносит никаких изменений в квантовый формализм. GT скорее придерживается другого взгляда на формализм, который называют взглядом открытых систем; т.е. в GT динамика систем представлена как фундаментально открытая. Динамика открытых систем в общем случае неунитарна и авторы считают, что «эвереттианцам было бы интересно пересмотреть свое мнение» на унитарность. Утверждается, что более общая динамика, описываемая в GT, может быть физически мотивирована, что для GT существует столько же эмпирической поддержки, сколько и для ST, и что GT может полностью соответствовать духу интерпретации Эверетта. Авторы считают, что «для эвереттианца» мало причин не принять более общий теоретический ландшафт, который позволяет исследовать GT.
2023-05-01 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 27 января 2023 года размещена статья Сары Бабаи Ханехсар и Фарзада Дидехвара (Sara Babaee Khanehsar, Farzad Didehvar) из Технологического университета имени Амира Кабира (Иран): «Машины Тьюринга, оснащенные CTC в физических вселенных» («Turing Machines Equipped with CTC in Physical Universes») (arXiv: 2301.11632). Авторы изучают парадоксальные аспекты замкнутых времениподобных кривых (CTCs) и их влияние на теорию вычислений. В 2016 году Скотт Ааронсон с соавторами, основываясь на CTC Д. Дойча, предложил машину Тьюринга, оснащенную CTC, названную TM CTC в классическом и QTM CTC в квантовом случае и исследовал их в контексте сложности и вычислимости. В целях физической непротиворечивости модели, предложены две аксиомы. Сильная аксиома: во Вселенной существует не более одной версии любой частицы; каждая частица, перемещающаяся по CTC, будет уничтожена до возвращения к своему исходному времени. Слабая аксиома: при уничтожении в подобной ситуации машины Тьюринга вся ее информация будет утрачена и не может быть использованы в следующем цикле CTC. Авторы утверждают, что во вселенной, содержащей CTC, эти две аксиомы должны быть верны; в противном случае во вселенной будет бесконечное число частиц, перемещающихся по CTC. Непосредственным результатом слабой аксиомы является неспособность машин Тьюринга передавать информацию в течение полного цикла по CTC, что приводит к тому, что предлагаемые программы TM CTC перестают функционировать. Авторы считают, что в нашей вселенной эти аксиомы выполняются (по их мнению, существование концепции машин Тьюринга во времени в нашей вселенной неосуществимо). Но, если предположить возможность передачи данных между различными временными направлениями; между машиной Тьюринга, движущейся в положительном направлении – в будущее, и машиной Тьюринга в отрицательном направлении – в прошлое, для передачи данных больше не требуется гипотеза постоянного существования машин Тьюринга. Например, из-за движения в разных временных направлениях две машины Тьюринга могут «коснуться» друг друга всего на секунду, после чего у них не будет доступа друг к другу, и, следовательно, должна быть возможной передача произвольного объема информации за секунду, что «вряд ли возможно». Парадокс, который может возникнуть при путешествии во времени и не исчезает с помощью методов согласованности, поскольку он вообще не известен как логическое противоречие, — это парадокс создания знаний. Предположим, что кто-то путешествует назад во времени, чтобы попасть в эпоху Геделя, и встречается с ним до 1931 года, даты публикации его статьи о теореме о неполноте, где он диктуют статью Геделю. В результате статья публикуется, как и ожидалось. Таким образом, каждое событие в мире, с путешествиями во времени и без них, является идентичным, и ничего парадоксального не происходит. Другими словами, в этом контексте, для теоремы о неполноте не существует исходной точки создания, и знание было создано без чьих-либо усилий. Эта неинтуитивная особенность путешествий во времени, которая, как считается, сохраняется в CTCs. В то же время авторы рассматривают и другую формулировку сценария, когда вселенная не совсем одинакова в обоих случаях (до посещения и с посещением путешественника во времени) с точки зрения внешнего наблюдателя; в первом проживании события Гедель размышляет о теореме о неполноте, в то время как во втором - он общается с путешественником во времени. Следовательно, этот сценарий также может быть логически парадоксальным. Кроме того, вышеупомянутый сценарий можно рассматривать как пример циклов причинно-следственной связи, поскольку невозможно распознать; путешественник во времени подсказал Геделю теорему о неполноте или наоборот; он узнал об этом от Геделя. Обсуждаются возможные физические условия, которые могут соблюдаться для вселенной, содержащей CTCs, в которой TM CTC и QTM CTC работают. Авторы предлагают для решения этой проблемы гипотезу передачи данных, в которой применяют вторую TM CTC в качестве средства их хранения. Во вселенной, содержащей CTCs, вся вселенная, включая всех существ, неизбежно возвращается к временной координате, в результате чего вселенная остается идентичной при любом посещении. Напротив, при путешествии во времени индивид попадает в «не совсем такой» мир. Рассматривается история парадокса дедушки с точки зрения наблюдателя вне пространства-времени, который не движется по CTC. Тогда мир «не совсем такой», каким он стал после путешествия внука во времени, поскольку в первом представлении координаты пространства-времени внука не существует; однако во втором представлении он стоит рядом со своим дедом.
2023-04-26 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 24 апреля 2023 года размещена статья Р. Е. Кастнер (R. E. Kastner) из Мэрилендского университета (University of Maryland, College Park) (США): «Квантовая теория нуждается (и, вероятно, имеет) реальную редукцию» («Quantum Theory Needs (And Probably Has) Real Reduction») (arXiv: 2304.10649). Автор (сторонница релятивистской транзактной интерпретации (РТИ) квантовой механики) отмечает, что традиционный, стандартный подход к квантовой теории состоит в предположении, что теория «на самом деле» содержит только унитарную физическую динамику - т.е. что единственная физически поддающаяся количественной оценке эволюция - это та, которая задается зависящим от времени уравнением Шредингера. Это приводит к двум различным классам интерпретаций стандартной теории «в ее ортодоксальной форме»: (i) подход эвереттианского типа (ММИ), предполагающий, что все взаимоисключающие результаты происходят в разных «ветвях» вселенной; или (ii) подходы с одним результатом, которые предполагают «проекционный постулат» (ПП). Противоположный, неортодоксальный подход заключается в том, чтобы предложить новые формы квантовой теории, которые предполагают физическую неунитарность; они называются «моделями объективного коллапса». Среди них теория Пенроуза о коллапсе, вызывающимся гравитацией, и транзакционная интерпретация. Основное внимание в этой статье, со слов автора, уделено демонстрации того, что «стандартная квантовая теория» (с постулатом проекции или без него) в принципе может приводить к вытекающим из нее эмпирическим несоответствиям. Интересно, что ММИ автор относит к «стандартной квантовой теории» в «ортодоксальной форме», да еще и упоминает ее первой (i), а Копенгагинскую интерпретацию – второй (ii). Один из разделов статьи называется: «Уцелеет ли Эверетт?». В ней, в частности, утверждается, что “ветвление” не может быть абсолютным; должна быть какая-то “интерференция” ветвей. В заключении статьи утверждается, что давно настало время серьезно рассмотреть конкурирующие (нестандартные) теории, которые предлагают плодотворные решения «фатальных проблем», с которыми сталкивается стандартная квантовая теория. Среди них теория гравитационного коллапса Диози-Пенроуза и РТИ. У них есть преимущество (по сравнению с подходом GRW) либо в отсутствии изменений в уравнении Шредингера (для случая теории Гирарди-Римини-Вебера), либо в изменении, которое мотивировано гравитацией, другой существующей теорией природы.
2023-04-21 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 21 апреля 2023 года представлена статья Филиппа Страсберга, Терезы Э. Рейнхард, Джозефа Шиндлера («Philipp Strasberg, Teresa E. Reinhard, Joseph Schindler») ) из Автономного университета Барселоны (Испания) и Калифорнийского университета в Санта-Крус, (США): «Все везде и сразу: Численная демонстрация первых принципов возникающих декогерентных историй» (“Everything Everywhere All At Once: A First Principles Numerical Demonstration of Emergent Decoherent Histories (arXiv: 2304.10258). В рамках формализма историй, дополненного авторами, функционал декогеренции (ФД) является инструментом для исследования возникновения классичности в изолированных квантовых системах в нерелятивистской квантовой механике. Предложена теоретическая основа для возникновения классичности, основанная на медленных и грубых наблюдаемых неинтегрируемой системы многих тел (напоминается, что человеческие чувства грубы и медлительны). В частности, предполагается решение проблемы предпочтительного базиса в ММИ, не полагаясь на декогеренцию, вызванную окружающей средой и на квантовый дарвинизм. Обсуждаются последствия представленных результатов для волновой функции Вселенной, интерпретаций квантовой механики и стрелы (стрел) времени. Утверждается, что можно найти (статистически) столько же историй со стрелой времени, направленной вперед, сколько и с обратной направленностью. Доказывается, что адекватное описание MМИ состоит в том, чтобы рассматривать количество ветвей как примерно постоянное, в соответствии с симметричным по времени описанием. Возможно, в модели можно использовать и симметричную по времени формулировку ФД, основанную на симметричной по времени формулировке квантовых измерений. Этот взгляд противоречит общепринятым представлениям MМИ, где экспоненциально возрастающее ветвление волновой функции происходит в одном временном направлении (обычно согласованном с собственной стрелой времени авторов). Хотя ММИ предполагает реализацию широкого спектра историй, но не обязательно верно, что “все, что может случиться, произойдет” (как иногда изображается как в научных, так и в научно-популярных текстах). Вопрос о количестве классических миров, поддерживаемых MМИ, и вопрос о том, когда именно и как быстро они разделяются, безусловно, требует дальнейшего изучения. Одна из точек зрения, предложенных в этой работе, заключается в том, что возникновение классичности лучше всего рассматривать как синергию различных механизмов, а не в рамках единой все объясняющей концепции. Предполагается, что, вскоре станет возможным протестировать представленную модель в лаборатории на квантовом компьютере.
2023-04-09 Ведущий научный сотрудник МЦЭИ А.М.Костерин сообщил, что в журнале «Философия науки и техники» (т.27, №2, 2022) опубликована статья Е.Н. Князевой (Национальный исследовательский университет «Высшая школа экономики») «Идея мультиверса: междисциплинарная перспектива https://pst.iphras.ru/article/view/8251 . В аннотации сказано: «В статье обсуждаются современные тренды в развитии идеи мультиверса (множественности миров) на материале естествознания. В физике это многомировая интерпретация квантовой механики Х. Эверетта, в биологии – учение об умвельтах Я. фон Икскюля, в когнитивной науке – представление о когнитивной замкнутости, субъективно личностной окрашенности, феноменологической определенности миров познания и творчества индивидов. Показывается, какие концептуальные основания могут быть предложены для поиска путей к развитию интегративного видения, для переброски мостов от физики к биологии и от биологии к социальным и гуманитарным наукам. В качестве возможных опорных концептуальных узлов для междисциплинарного синтеза рассматриваются эволюционная эпистемология, концепция автопоэзиса, теория сложных систем и биосемиотика. Эти теоретические концепции позволяют предположительно объяснить, почему миров много и почему они отделены друг от друга, в живой природе когнитивно замкнуты».
2023-04-07 В «Библиотеке» выставлена новая редакция статьи А.В.Каминского «Субъективная статистика и явления, которых нет с научной точки зрения» https://disk.yandex.ru/i/2gpMKCuK76Ws7w В ней рассматривается гипотеза существования физических явлений, источником которых является сознание наблюдателя. В заключение автор пишет: «Основной вывод, который мы хотим донести до читателя состоит в следующем: существуют физические явления, условием самого существования которых является участие в них сознания наблюдателя. Явления, обязанные своим существованием структурированности рефлексии, формально (с точки зрения науки) не существуют, ибо генерируются сознанием. Однако, не смотря на свое фантомное существование, их проявления вполне реальны и могут быть измерены. Рассмотренные явления, хотя и не «любят»
2023-04-07 В «Библиотеке» выставлена новая статья А.В.Каминского «Солипсизм в физике» https://disk.yandex.ru/i/sWiXZELAS-skmQ .Автор утверждает, что в ней «совершив краткий экскурс в область философии сознания и связанные с ней концептуальные проблемы физики, мы еще раз убедились в том, что простым, эстетически безупречным и логически стройным решением этих вопросов является субъективная философия. Тот факт, что квантовая механика «флиртует» с солипсизмом известен давно. Еще Эйнштейн говорил о «квантовом солипсизме». Однако, до сих пор, все попытки решить трудную «проблему сознания» сводились исключительно к физикалистским гипотезам.
2023-04-05 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что архиве электронных препринтов 05 апреля 2023 года представлена статья Марцина Новаковского (Marcin Nowakowski) из Гданьского технологического университета, Гданьского национального центра квантовой информации (Польша): «К физике внутренних наблюдателей: Изучение роли внешних и внутренних наблюдателей» («Towards Physics of Internal Observers: Exploring the Roles of External and Internal Observers»); (arXiv: 2304.01677).
2023-03-28 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 28 марта 2023 года размещена статья Юджина Ю. С. Чуа и Крейга Каллендера (Eugene Y. S. Chua, Craig Callender; eychua@ucsd.edu; ccallender@ucsd.edu): «Нет времени для времени из безвременья» («No Time for Time from No-Time»), (arXiv: 2303.14854 ). Программы в области квантовой гравитации часто порождают предположительно фундаментально вневременные формализмы. Сосредоточившись конкретно на приближениях, необходимых для получения времени из безвременья, авторы показывают, что время неявно возвращается обратно через физические обоснования, стоящие за этими приближениями. Это оставляет применение программы либо неоправданным, либо работающим только из-за цикличности.
2023-03-18 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 17 марта 2023 года размещена статья Стивена Сагона-Стопхел (Steven Sagona-Stophel) из Имперского колледжа Лондона (Великобритания): «Поддающиеся фальсификации тесты для теорий, которые управляют тем, как сознательный опыт индивида пересекает Мультивселенную "Многих миров" Эверетта» («Falsifiable Tests for Theories that Govern How an Individual’s Conscious Experience Traverses Everett’s 'Many-Worlds' Multiverse»), (arXiv: 2303.08820). Предлагается набор простых экспериментов по квантовой оптике, которые проверяют совершенно новую область физических законов, управляющих тем, как сознательный опыт индивида «пересекает Мультивселенную» в рамках интерпретации квантовой механики Эверетта "Множество миров" (ММИ). Эти эксперименты подразумевают исключение из правила Борна в предлагаемой системе отсчета, "зависящей от конкретного наблюдателя" и могут быть проведены читателями статьи. Если они будут выполнены кем-либо другим, то можно заметить, что человек, проводящий эксперимент, будет наблюдать результат, который не является особенным, интересным или отличающимся от того, что уже известно о квантовой механике. Насколько автору известно, это был бы первый в истории современный эксперимент, который имеет смысл только в том случае, если эксперимент проводится «читателем», от первого лица, и не может быть выведен из результатов другого экспериментатора. Поэтому, поскольку каждый человек должен выполнить этот тест самостоятельно, описывается набор реальных экспериментов, которые можно легко провести таким образом, чтобы как можно больше людей могли индивидуально убедиться в этом для себя. Автор не знает и не уточняет, какие конкретные физические законы существуют в этой "специфичной для наблюдателя" области, но предлагает ряд различных тестов, чтобы охватить как можно больше теорий.
2023-03-15 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 15 марта 2023 года размещена статья Барака Шошани и Зипоры Штобер (Barak Shoshany, Zipora Stober) из университета Брока (Канада) и Университета Абердина (Великобритания): «Парадоксы путешествий во времени и запутанные временные линии» («Time Travel Paradoxes and Entangled Timelines»), (arXiv: 2303.07635). Авторы представили новую модель для разрешения парадоксов путешествий во времени с использованием параллельных временных линий, называемых запутанными временными линиями или моделью E-CTC. В модели параллельные временные линии создаются путем взаимодействия между машиной времени и окружающей средой, точно так же, как “миры” интерпретации Эверетта (ММИ) создаются путем взаимодействия между наблюдателем и наблюдаемой системой. Каждая временная линия - это не отдельная вселенная, а скорее отдельный член в суперпозиции общего квантового состояния вселенной. Запутанные временные линии создаются локально в машине времени, а затем постепенно распространяются на остальную вселенную по мере того, как запутывается все больше систем. В этом процессе всегда существует только одна вселенная, а не множество вселенных, и, следовательно, термины “многие-миры” или “мультивселенная” неприменимы. Рассматривается запутанность между подсистемами в очень большом (возможно, бесконечном) тензорном произведении. Вместо “многих миров” или “мультивселенной” более точным термином, возможно, могло бы быть “запутанные миры” или “запутанные истории”. Представленная модель отличается от известной модели D-CTC Д. Дойча и улучшает ее несколькими важными способами.
2023-03-14 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 13 и 14 марта 2023 года размещены 5 новых статей (см. PS) Сэмюэля Эпштейна (Samuel Epstein) из JP Theory Group по темам алгоритмической теории вероятностей, аномалиям и выбросам. Наибольший интерес вызвала статья: «A Quantum Outlier Theorem» («Теорема о квантовых выбросах»); (arXiv:2303.06256). В алгоритмической теории информации понятие выброса моделируется с использованием коэффициента случайности. Есть формула определения дефицита случайности (randomness deficit), в которой есть показатель того, насколько нетипична точка данных по отношению к модели. Одним из недавних результатов в классическом случае дефицита случайности является то, что методы выборки приводят к выбросам (Samuel Epstein, 2021).
2023-03-11 В библиотеке выставлена презентация А.К.Гуца «Многовариантная история, или многовариантное прошлое» https://disk.yandex.ru/i/l1xQEOFxLhP5_g , подготовленная автором для беседы в «эвереттическом клубе» 19 февраля 2023 года https://www.youtube.com/watch?v=ZpdsIHgaGbY .
2023-03-08 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 8 марта 2023 года представлена статья Антуана Суласа (Antoine Soulas) из Реннского университета и CNRS (Национальный научно-исследовательский центр) в Ренне (Франция): «О проблемах измерения в (релятивистской) квантовой механике» (“On the measurement problems in (relativistic) quantum mechanics”); (arXiv: 2303.03465). Автор исследуем основные проблемы, которые возникают в (релятивистской) квантовой механике относительно реализации измерений. Попытка сформулировать исчерпывающее решение проблемы измерения приводит к лучшему пониманию статуса коллапса и возникновения классичности, благодаря точному определению измерения и некоторому новому словарному запасу, позволяющему говорить о квантовой механике и декогеренции. Результат можно рассматривать как «шаг за пределы много-мировой интерпретации квантовой механики»; интерпретацию, которую автор разрабатывает, по его мнению, можно было бы рассматривать как много-мировую интерпретацию с большей философской строгостью, не придавая "мирам" больше онтологии, чем они заслуживают. Процесс измерения можно рассматривать как новую языковую игру, как ее понимал Витгенштейн (1953). Автор напоминает, что мы молчаливо предполагаем, что воспоминания физика полностью закодированы в материальной структуре мозга. Однако он убежден, что дух не сводим к материи, но что простые когнитивные процессы, такие как задача запоминания того, был ли включен детектор или нет, обычно управляются мозгом и предположительно к нему сводимы. Нам нужны наблюдатели, имеющие память. Но какой смысл нам записывать волновую функцию с точки зрения фотона? В конце концов, самая интересная характеристика, которую мы можем ожидать от наблюдателя, это, пожалуй, способность сообщать факты и субъективный опыт. Решение проблемы измерения скорее заключается в осторожном изменении того, как мы думаем и говорим о квантовой механике (КM). Проблема измерения — это гораздо больше проблема слов, чем проблема математики. Точнее, это задача интеграции уроков теории декогеренции на языке физики наряду с принятием относительности фактов как фундаментального аспекта Вселенной. Обычный манихейский выбор между эпистемическим и онтическим значением волновой функции слишком схематичен. Чтобы показать это, проблема раскладывается на два основных вопроса: состояние распада и возникновение классичности. Конечно, в квантовой механике (КM) все запутанно, потому что это вероятностная теория, в которой все возможные истории взаимодействуют друг с другом, так что кажется, что каждый потенциальный результат оказал влияние на результат эксперимента, следовательно, на своего рода «реальность». Действительно, операция обновления вероятностей путем подавления всех возможных историй, кроме той, которая фактически наблюдалась (или тех, которые совместимы с наблюдением), является законной до тех пор, пока не разрешена повторная когерентность. В противном случае возможные истории снова интерферируют, так что подавление некоторых из них должно привести к неправильным предсказаниям. Автор убежден, что коллапс — это не физический процесс, а всего лишь естественное следствие вероятностной природы квантовой теории. Им придуман некоторый словарь ("возможные истории", "разделение", "рекомбинация", "факт"...), чтобы говорить о математике КM, в надежде вызвать в уме четкие картины с как можно меньшим количеством противоречащих интуиции свойств. В КM выбор ортонормированного базиса в Гильбертовом пространстве соответствует выбору конкретного способа описания возможных историй, количественного определения в какой степени эти истории разделены. Декогеренция гарантирует только то, что истории легко различимы в конкретном базисе, где они не влияют друг на друга. Сам факт того, что система должна иметь возможные истории, которые разделяются или интерферируют, не являются абсолютными, потому что существуют бесконечно неравнозначные способы их разложения. Основная информация, которой мы располагаем о мире, в основном связана с положением в пространстве, так что именно на этой основе мы представляем наше взаимодействие с миром. Автор «был бы удивлен», встретив инопланетянина, но не удивился, если бы у «инопланетянина» не было абсолютно ничего похожего на "понятие пространства и положения", хотя его тело, если оно сделано из материи, безусловно, будет восприниматься нами как подчиняющееся законам физики. Такой инопланетянин, вероятно, долго не проживет на Земле, но может быть, на его планете нет наследственности и, следовательно, нет дарвиновской эволюции; может быть, стабильность фактов или само понятие фактов не дают там никаких преимуществ; может быть, то, что мы сочли бы его смертью, не было бы значимым событием в его мире.
2023-03-07 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 7 марта 2023 года размещена статья Ника Ормрода, В. Виласини, Джонатана Барретта (Nick Ormrod, V. Vilasini, Jonathan Barrett) из Оксфордского университета (Великобритания) и Высшей технической школы Цюриха (Швейцария): «У каких теорий есть проблема с измерением?» («Which theories have a measurement problem?»), (arXiv: 2303.03353). В начале статьи автор спрашивает себя: если Алиса выполняет измерение и наблюдает результат в виде того, что индикатор мигает красным, то является ли абсолютным фактом, что это именно то, что она видела? Или существует какой-то другой мир, контекст или перспектива, в которых она видела, как это вспыхнуло каким-то другим цветом? Предположительно, по крайней мере иногда, это происходит. Но если наблюдаемые события не являются абсолютными, то, по-видимому, они должны быть относительными. Но в связи с чем? Ни Эверетт, ни согласованные истории, ни реляционализм Ровелли не смогли достичь консенсуса, и даже спорным является вопрос о том, является ли какой-либо из этих подходов точной физической теорией, которая может восстановить предсказания копенгагенской интерпретации. Если онтология теории содержит много противоречивых историй, о том, что происходит, в зависимости от выбора референций - ссылок, то должен ли исследователь выбрать референцию прежде чем получет однозначные прогнозы. Но если теория утверждает, что все референции равнодействительны, неясно, можно ли это сделать принципиальным образом. То есть, предсказания, сделанные теории с реляционной онтологией слишком неоднозначны, чтобы обеспечить способы эмпирического подтверждения этого. Имеется близкородственная проблема чисто эпистемологического характера. А именно: в мире, где наблюдаемые события не являются абсолютными, как может быть достигнуто интерсубъективные соглашение? Чтобы обратиться к проблеме интерсубъективности в гораздо более общем контексте можно было бы расширить структуру квантовых схем для субъективных точек зрения агентов. Можно попытаться определять событие не как одну классическую переменную, принимающую значение, а как целую совокупность переменных, соответствующих различным возможным перспективам. Это приводит нас к перспективе непротиворечивых историй, в которой различные согласованные последовательные наборы семейств проекций находятся на равной онтологической основе.
2023-03-05 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 1 марта 2023 года размещена статья Филиппо Маймоне, Адель Наддео, Джованни Шелца (Filippo.Maimone, Adele Naddeo, Giovanni Scelza) из Культурной ассоциации «Велия Полис» и Секции Национального института ядерной физики в Неаполе (Италия): «Взаимодействие миров Эверетта и фундаментальная декогерентность в неунитарной ньютоновской гравитации» («Interaction between Everett worlds and fundamental decoherence in Non-unitary Newtonian Gravity»); (arXiv:2302.14631). Авторы предлагают модель неунитарной ньютоновской гравитации (ННГ), в которой сумма по всем возможным историям заменяется суммой по парам путей-историй благодаря возникновению корреляций между путями. Корреляции между различными путями допускаются фундаментальным механизмом декогеренции гравитационного происхождения и могут быть интерпретированы как своего рода связь между различными ветвями волновой функции. Ваимодействие между ветвями Эверетта должно быть принято во внимание при работе с проблемой измерения, поскольку полная независимость миров Эверетта не может объяснить механизм объективной редукции квантового состояния с помощью (макроскопического) измерительного прибора. Последующая картина мягкой версии теории многих миров Эверетта избегает непрерывного макроскопического расщепление самих себя, оставляя место для настоящего квантового параллелизма в мезоскопической области. Принципиально возможно экспериментальное подтверждение вышеизложенного. Огромные технологические усилия в этом направлении и в целом направлены на то, чтобы еще больше раздвинуть границы экспериментального доступа к мезо- и макроскопической области.
2023-03-04 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 3 марта 2023 года размещена статья Влатко Ведрала (Vlatko Vedral) из Оксфордского университета (Великобритания): «Интерпретация квантовой физики «все есть квантовая волна» » («The Everything-is-a-Quantum-Wave Interpretation of Quantum Physics»), (arXiv:2303.00831). Эверетту обычно приписывают продвижение картины, в которой вся Вселенная является квантовой, а измерения - это просто переплетения (запутанность) между различными квантовыми системами, однако, многие другие физики пришли к такому же выводу задолго до него (как свидетельствует знаменитый мысленный эксперимент с котом, Шредингер сделал это примерно за 20 с лишним лет до Эверетта), имея в виду, что в случае «Кота Шредингера» одновременно существуют две ветви (кот-жив и кот-мертв). Эти две ветви ортогональны, но они могли бы – по крайней мере, в принципе – интерферировать. В частности, в 1929 году Мотт фактически подготовил почву для много-мировой интерпретации квантовой механики (которую, по мнению Ведрала следует называть интерпретацией «Все есть квантовая волна» (EQWI), потому что он думает, что это более подходящее название, чем Интерпретация многих миров (MWI). Так почему же EQWI вместо MWI? Именно потому, что состояние Вселенной, в котором мы можем говорить о мирах это всего лишь предельный, частный случай EWQI. Миры возникают только тогда, когда у нас есть полностью ортогональные состояния наблюдателей (т.е. квантовые системы, выполняющие измерения, а измерения - в этой интерпретации — просто переплетения-запутывание с другими системами). Эверетт подчеркивал относительную природу квантовых наблюдений. На современном жаргоне, когда одна система максимально запутывается с другой, обе системы теряют согласованность в своих соответствующих базисах, становятся коррелированными друг с другом. Эта потеря когерентности известна как декогеренция. Декогерентность - это не еще одно явление, которое нужно добавить к квантовой физике, чтобы объяснить возникновение классичности. Это уже содержится в квантовой физике и возникает естественным образом всякий раз, когда происходит взаимодействие. Возможность интерференции разных миров имеет решающее значение для этой точки зрения и приводит к тому факту, что “ненаблюдаемые результаты могут повлиять на будущие измерения”. Автор надеется, что убедил читателей в том, что EQWI самая естественная картина Вселенной, которая у нас есть на данный момент. Он ни на секунду не верит, что это наша последняя картина; мы должны подождать, чтобы следующая теория физики смогла заговорить о своей интерпретации. Следующая теория физики должна будет содержать квантовую физику в качестве особого предельного случая.
2023-02-28 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 27 февраля 2023 года представлена статья Адриана Кента (Adrian Kent) из Кембриджского университета (Соединенное Королевство) и Института теоретической физики Периметр (Канада): «Дружеские мысли о вдумчивом дружелюбии» («Friendly thoughts on thoughtful friendliness»); (arXiv:2302.12707). Обсуждается "вдумчивая" теорема Виземана, Кавальканти и Риффель (ВКР) (Wiseman et al., 2022) о недопустимости «локального дружелюбия» и экспериментальная программа, которую они предлагают для проверки. А. Кент считает, что для доказательства предложенной ВКР теоремы необходимо исключить возможность существования переменного числа «вдумчивых» агентов на разных фазах эксперимента – версии эксперимента друга Вигнера. Утверждается, что такая возможность может возникнуть естественным образом даже в версиях квантовой теории, основанных на одном мире. А. Кентом «не отрицается» возможность того, что сознательные и бессознательные мысли абсолютно реальны. “Cogito ergo sum” кажется ему хорошей основой для понимания реальности, если перевести “cogito” как “Я сознательно мыслю” или, лучше, “я сознательно переживаю” (что охватывает как мысли, так и восприятие). Допускается существование как сознательных, так и бессознательных мыслей (ВКР намеренно используют термин “мысли”, а не «сознание», которое использовал Вигнер). По общему мнению можно утверждать, что передаваемые бессознательные мысли могут обладать некоторыми особенностями, которые не присущи обычным физическим процессам. Но, по-видимому, трудно определить эти особенности в простых терминах. Например, они могут являться частью вычислений, но таковы же и многие механические операции, и в некотором смысле таковы все физические взаимодействия. … Один из разделов статьи называется: «Кроме того: все ли эвереттовские версии квантовой теории требуют соотнесенных состояний?» По мнению А. Кента «некоторые современные эвереттианцы» могли бы сказать, что расщепление сознания, подобное описанному Парфитом (1984), является правильным способом понять, что их версия квантовой теории многих миров (ММИ) говорит о состоянии друга Вигнера после его измерения. «Эвереттианцы» могли бы сказать, что на самом деле просто существуют два (или более) друга в процессе наблюдения. С этой точки зрения, этому не противоречит тот факт, что друзья фактически неспособны взаимодействовать и непосредственно не знают о существовании друг друга. В то время как в типичных моделях Эверетта ветви разделяются, но, по существу, никогда не рекомбинируют, здесь (в ситуации эксперимента друга Вигнера) две сознательные копии снова становятся одной, одним «я» к концу эксперимента. Мы не должны предвосхищать возможность того, что правила, связывающие сознание с состоянием квантовой суперпозиции могут не согласовываться ни с концепцией ВКР, ни с «Эвереттианским квантовым функционализмом» (некоторая неформальная версия которого, вероятно, является наиболее распространенной альтернативой интуиция среди физиков о сознании друга Вигнера). Подводя итог, автор утверждает, что амбициозная экспериментальная программа ВКР не сможет дать по-настоящему убедительных результатов до тех пор, пока у нас не будет основанной на фактических данных теории сознания.
2023-02-28 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 28 февраля 2023 года размещена статья Дэвида Вьеннота (David Viennot) из Университета Франш-Конте, обсерватории Безансон (Франция): «Геометрические фазы, многомировая интерпретация квантовой механики Эверетта и червоточины» («Geometric phases, Everett,s many-worlds interpretation of quantum mechanics, and wormholes»); (arXiv:2302.13651). Доказывается, что геометрические фазы в квантовой динамике обеспечивают конкретную геометрическую реализацию ММИ. Основные характеристики этой интерпретации (“суперпозиция” миров, “интерференции” между совместимыми мирами, возникновение структуры многих миров благодаря наблюдению, связь между предпочтительным базисом и феноменом декогеренции) имеют геометрические реализации. Показано, что эта геометрическая реализация ММИ тесно связана с квантовой гравитацией (особенно с матричными моделями). Причем, это не просто аналогия, но истинная физическая модель квантовой червоточины в квантовой гравитации, причем две модели согласуются друг с другом. Концепция червоточины (кротовой норы), заимствованная из общей теории относительности (ОТО) в этой геометрической реализации, занимает центральное место (квантовая червоточина является вполне “многомировой червоточиной” в интерпретации квантовой адиабатической динамики). В средней точке между реалистической позицией (существует реальность, независимая от ума, доступная и умопостигаемая, состоящая из объектов) и идеалистической позицией (вещь в себе, по сути непознаваема по своей природе) или инструментальной позицией, автор имеет позиции структурного реалиста. По мнению автора, отношения между объектами (а не сами объекты) или структурами, в которых эти объекты имеют место, являются истинной сущностью Реальности. Можно представить ММИ как структурный реализм, поскольку структура многих миров соотнесена с отношениями система-наблюдатель (для ненаблюдаемой системы множество миров не существует и возникает только при наблюдении). Другая возможность состоит в том, чтобы утверждать, что знакомые понятия из наших ментальных образов не в состоянии передать реальность в микроскопическом масштабе, ее могут описать только термины из абстрактной математики. С этой позиции математические структуры ближе к сущности Реальности, чем объекты (частицы, атомы, ...). Эта позиция называется математическим реализмом в физике или пифагорейским реализмом. С этой пифагорейской реалистической точки зрения возникновение квантовой гравитации (с искривлением и кручением) и возникновение множества миров в адиабатической динамике с запутанностью — это один и тот же “физический” процесс, (в основе которого — одна математическая структура). Формализм геометрических фаз может стать связующим звеном между ММИ и позицией Пифагора в синкретизме этих двух структурных реализмов.
2023-02-25 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 12 декабря 2022 года размещена третья редакция статьи Чжи-Вэй Ван и Сэмюэля Л. Браунштейна (Zhi-Wei Wang, Samuel L. Braunstein) из Цзилиньского университета (КНР), Уорикского университета, Йоркского университета (Великобритания): «Жизнь в случайной вселенной: аргумент Сиамы пересмотрен» («Life in a random universe: Sciama’s argument reconsidered»); (arXiv: 2109.10241v3). Вселенная, в которой мы обитаем, до сих пор поддерживала возникновение, эволюцию и непрерывное существование человеческих существ в условиях жестких ограничений на фундаментальные константы Вселенной. Аргумент британского физика, космолога Денниса Сиамы (1926–1999) заключается в том, что, если бы наша Вселенная была случайной, в ней почти наверняка был бы ничтожно малый шанс на существование жизни. Авторы показывают, что случайная вселенная может маскироваться под «разумно спроектированную», а фундаментальные константы кажутся точно настроенными для достижения наивысшей вероятности возникновения жизни. Можно представить вселенные, совместимые с существованием человека, как «остров» в «море» более общих возможностей. Каждая точка на острове или в море описывает уникальную вселенную, которая описывается отдельным набором фундаментальных констант. Размерность этого пространства точек наивно задается числом фундаментальных констант. Таким образом, совместимый с человеком остров вселенных соответствует некоторой форме в многомерном пространстве. Береговая линия острова соответствует границе, отделяющей вселенные с шансом на формирование жизни/человечества от тех, где это невозможно. Таким образом, сама береговая линия будет состоять из вселенных с точно равной нулю вероятностью такой жизни. Предполагая непрерывность, по мере продвижения вглубь суши эта вероятность будет увеличиваться, достигая максимума, предположительно, где-то далеко от береговой линии. Этот вероятностный ландшафт отличается от вероятности случайного выбора вселенной. По мнению автора, текущее лучшее предположение о фундаментальной теории - теория струн, естественно, содержит мультивселенную и, следовательно, механизм случайного выбора. Предполагается статистический прогноз о том, что по крайней мере около дюжины фундаментальных констант, а возможно, и многие другие, которые еще предстоит открыть, необходимы, чтобы полностью объяснить нашу Вселенную. Помимо актуальных в рассматриваемом контексте антропных проблем, построения авторов могут иметь отношение к астрономии и вообще к любой области, если рассматривать их как науку о данных (data science).
2023-02-19 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов прислал следующее дополнение к сообщению от 16 февраля 2022 года:
2023-02-16 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 16 февраля 2023 года размещена статья Сэмюэля Эпштейна (Samuel Epstein) из JP Theory Group: «Осложнение для теории многих миров» («A Complication for the Many Worlds Theory»); (arXiv: 2302.07649). «Теория многих миров» (MМТ=ММИ) была сформулирована Хью Эвереттом как решение проблемы измерения в квантовой механике. Ветвление (также известное как расщепление миров) происходит во время любого процесса, который увеличивает микроскопические суперпозиции до макромасштаба. Но между MМИ и алгоритмической теорией информации возникают конфликты. Например, конфликт — это эксперимент, в котором измеряется спин большого числа электронов, причем каждое измерение разбивает текущую ветвь на две подветви. В результате получается одна ветвь, в которой выводится последовательность остановки (то есть работа машины Тьюринга не завершится за конечное число шагов, или же будет продолжаться неограниченно долго). Однако эта ветвь имеет вероятность Борна, сходящуюся до 0 и может рассматриваться в рамках ММИ как девиантная, нетипичная ветвь. Если рассматривать существование эксперимента, измеряющего спин большого числа электронов, то в нем есть ветви положительной вероятности, содержащие «запрещенные» последовательности, которые нарушают Постулат Независимости (ПН). ПН — это конечный тезис Черча-Тьюринга, постулирующий, что определенные бесконечные и конечные последовательности не могут быть найдены в природе; в одной из формулировок ПН утверждается, что математические последовательности не зависят от физических (существует и строгое математическо определение ПН). Если «запрещенная» последовательность все же будет обнаружена в природе, произойдет утечка информации. В ММИ возможны ветви с существенной вероятностью возникновения, где происходят утечки информации; MМИ представляет теорию, в соответствии с которой такие утечки информации могут происходить. Существует множество вариаций MМИ, когда речь заходит о согласованности разных вселенных. В одной формулировке все вселенные подчиняются одним и тем же физическим законам. В другой модели каждая вселенная имеет свои собственные законы, например, различные значения гравитации и т.д. Однако сама математика отличается в разных вселенных, независимо от того, какая модель используется. В этом контексте, поиск новых аксиом математики был предусмотрен как возможность Геделем (1961), но существует всеобщий консенсус в отношении невозможности выполнения этой задачи. По мнению автора: «Уже нет!» такого консенсуса. В некоторых вселенных ПН сохраняется, и нет никакого способа создать утечку информации. В других вселенных происходят утечки информации, и есть задачи, в которых рандомизированные алгоритмы терпят неудачу, но неалгоритмические физические методы преуспевают. Кроме того, поскольку утечки информации являются конечными событиями, вероятность рождения миров, содержащих их, не является незначительной. В таких мирах ПН не может быть сформулирован, и основы алгоритмической теории информации сами по себе становятся оторванными от реальности.
2023-02-16 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 15 февраля 2023 года размещена статья Джона Г. Крамера (John G. Cramer) из Вашингтонского университета (США): «Исследованное квантовое рукопожатие» («The Quantum Handshake Explored»); (arXiv: arXiv: 2302.06748). Обсуждается транзакционная интерпретация квантовой механики (ТИ); описывается математическая модель, которая показывает, как формируются транзакции. ТИ описывает квантовые взаимодействия в условиях стоячей волны, образованной запаздывающими («вперед-по-времени») и наступающими («назад-по-времени») волнами. Автор отмечает, что многомировая интерпретация квантовой механики (ММИ) утверждает, что интерференция между ее «мирами» (например, путями частиц) не должна возникать, когда миры квантово-различимы. Поэтому ММИ, как и Копенгагенская интерпретация, предсказывает отсутствие интерференционных эффектов в эксперименте Афшара (2004). (Эксперимент Афшара представляет собой вариант двухщелевого эксперимента для фотонов, в котором, по мнению автора, проявляются одновременно волновые и корпускулярные свойства фотонов, тем самым нарушая принцип дополнительности, что вызывает споры исследователей). Таким образом, по мнению автора, и ММИ и Копенгагенская интерпретация не могут правильно отобразить стандартный формализм квантовой механики, а ТИ может.
2023-02-09 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 7 и 8 февраля 2023 года представлены вторая и третья, доработанные, редакции статьи Чжунхао Лу (Zhonghao Lu) из Питтсбургского университета (США): «Личностная идентичность и неопределенность в Мультиверсе Эверетта» («Personal Identity and Uncertainty in Everetts Multiverse»). В 3 редакции изменено название статьи на «Личностная идентичность и неопределенность в Эвереттовской интерпретации квантовой механики» (Personal Identity and Uncertainty in the Everett Interpretation of Quantum Mechanics); (arXiv: 2209.02639.v2; arXiv: 2209.02639.v3). Доклад по теме статьи был прочитан и обсужден на международной конференции: «Многомировая интерпретация квантовой механики» в Тель-Авивском университете 18–24 октября 2022 года. Интерпретация квантовой механики Эверетта (ММИ) — это детерминированная физическая теория, но это также теория, рассматривающая вероятность с помощью правила Борна. Детерминированный характер ММИ, по-видимому, несовместим с обсуждениями, содержащими в ММИ вероятность (так называемая “проблема некогерентности” ММИ (Сондерс и Уоллес 2008a)). «Дух» ММИ заключается в том, что нам не нужны какие-либо дополнительные структуры или постулаты квантовой механики и понятный здравому смыслу 4-мерный мир, в котором мы живем, просто возникает из квантового состояния. Существование мира в ММИ является приблизительным, и может быть расплывчатым и неопределенным в ММИ (Wallace 2002, 2003, 2010, 2012). Рассматривая проблему личностной идентичности, автор ссылается на Уоллеса, который утверждал, что существующая концепция транстемпоральной идентичности паттернов лишь приблизительна, а различие между перекрывающимися и расходящимися историями (в рамках ММИ) является лишь поверхностным артефактом. Если мы попытаемся найти какие-либо глубокие различия между такими историями, мы добавим в ММИ дополнительные структуры и выйдем за ее (ММИ) рамки. Хотя личностная идентичность влияет на физическую реальность с точки зрения физикализма, она не являются частью наших лучших физических теорий; нам все еще нужно исследовать, как личностная идентичность влияет на физическую реальность. Автор (опираясь на Д.К. Льюиса) предлагает модифицированную точку зрения о том, что существует множество качественно идентичных, но численно отличающихся ментальных состояний, которые следуют за одним физическим состоянием до разветвления (в рамках ММИ), что противоречит принципу супервентности и не может соответствовать физикализму. Физикализм не может существовать, если не работает принцип супервентности (супервентность используется в философии сознания для описания зависимости ментальных явлений от физических явлений). Автор не считает, что нефизикализм (например, дуализм) — это что-то слишком плохое, чтобы его не принимать, и полагает, что много-разумная интерпретация (МРИ; Lockwood, Michael. 1996) квантовой механики заслуживают большего внимания, чем она получила сегодня. Возможно, нам потребуется дать новую математическую формулировку квантовой механики, чтобы различать качественно идентичные, но численно отличающихся ментальные состояния в математике, где квантовое состояние с нулевым коэффициентом само по себе означает бесконечное перекрытие физических состояний.
2023-02-02 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 31 января 2023 года размещена статья Джеффри Буба (Jeffrey Bub) из Мерилендского университета (США): «Предисловие к книге: «Понимание квантовых розыгрышей» Майкла Джанаса, Майкла Э. Куффаро, Майкла Янссена. (Бостонские исследования по философии и истории науки, 340. Спрингер, 2022); («Foreword to Understanding Quantum Raffles, by Michael Janas, Michael E. Cuffaro, Michael Janssen»); (arXiv: 2301.12266»). В заключении статьи Д. Буб, который сам придерживается теоретико-информационной интерпретации квантовой механики, пишет о том, что интерпретация Эверетта рассказывает многомировую Булевую историю, в которой все то, что может случиться, действительно происходит в каком-то Булевом мире. Это позволяет избежать объяснения, почему наблюдается именно тот, а не другой результат измерения, поскольку каждый возможный результат на самом деле происходит в каком-то мире. При этом в ММИ нет никаких жутких действий на расстояние, но есть проблема измерения: как объяснить выбор того или иного базиса. «Эвереттианцы» решают проблему базиса, обращаясь к динамике декогерентности окружающей среды: по мере того, как окружающая среда становится все более запутанной с измерительным прибором, становится все труднее, но в принципе не невозможно отличить запутанное состояние от соответствующей смеси по отношению к особому крупнозернистому базису. Квантовые вероятности объясняются в терминах теории решений агента-в-мире, делающего измерения. По мнению автора, «Понимание Квантовых Розыгрышей», вероятно, станет классикой фундаментальной литературы по квантовой механике. Трое Майков (то есть авторы книги) сделали исключительно понятную книгу по квантовым основам, которая подходит для читателей, которые ищут ответы на концептуальные вопросы, обычно игнорирующиеся в стандартных курсах квантовой механики.
2023-02-02 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 2 февраля 2023 года размещена новая статья Джеффри Буба (Jeffrey Bub) из Мерилендского университета (США): «Как это может быть?» («How can it be like that?»); (arXiv: 2302.00084). По мнению автора, «кое-что» в концептуальных основах квантовой теории вызывает глубокое недоумение, но что именно так его беспокоит, определить нелегко. Три книги: Оливаля Фрейре "Квантовые диссиденты", Адама Беккера "Что реально?" и Филипа Болла "За гранью странного" посвящены попыткам соперников объяснить, как это может быть, и, в случае книг Фрейре и Беккера, о вражде между противоположными лагерями, которая иногда имела разрушительные последствия для профессиональной карьеры главных героев. «Квантовые диссиденты» начинаются с описания причинной интерпретации квантовой механики Дэвида Бома, впервые опубликованной в 1952 году. Вторым крупным диссидентом в 1950-х годах был Хью Эверетт III, который предложил формулировку квантовой механики: "соотнесенное состояние", получившую название «многомировой» (ММИ) интерпретации у Брайса Девитта. В статьи излагаются основные положения ММИ и история взаимоотношений Эверетта с Нильсом Бором, в частности отмечено, что анализ Эверетта учитывает субъективный опыт наблюдателя в Мультивселенной, рассматривая корреляции между состояниями памяти. Квантовая механика Эверетта и теория Бома в обобщенном смысле могут быть поняты как разные интерпретации одной и той же основополагающей теории. Теория Эверетта — это просто "теория пилотных волн без траекторий", как выразился Белл, — и есть аспекты, в которых эта теория Бома-Эверетта эмпирически не эквивалентна теории стандартной квантовой механики. Для сценариев, которые включают установки типа «друга Вигнера», как недавно указали Вероника Бауманн и Стефан Вульф (2018), эти теории дают разные прогнозы. Такие эксперименты даже отдаленно невозможны на практике, хотя ничто в квантовой механике не запрещает их реализацию в принципе. По-разному, все три книги (Оливаля Фрейре, Адама Беккера и Филипа Болла) посвящены продолжающейся «саге» об интерпретации квантового мира и о том, как мы начинаем получать некоторые захватывающие новые ответы на старые вопросы. «Три книги»: Olival Freire Jr. The Quantum Dissidents: Rebuilding the Foundations of Quantum Mechanics (1950–1990), Foreword by Silvan S. Schweber. 2015. Adam Becker. What is Real? The Unfinished Quest for the Meaning of Quantum Physics. New York: Basic Books, 2018. Philip Ball. Beyond Weird: Why Everything You Thought You Knew About Quantum Physics is Different. London: The Bodley Head, 2018.
2023-02-01 В «Библиотеке» размещён перевод П.Амнуэля статьи Эрве Цвирна «Интерпретация Эверетта и дружественный солипсизм» (Herve Zwirn, «Everett’s interpretation and Convivial Solipsism). В аннотации автор сообщает: «Я показываю, как квантовые парадоксы возникают, когда мы принимаем, что стандартная реалистическая структура исчезает (или рамки, в которых коллапс подразумевает физическое изменение состояния системы), если мы отказываемся
2023-01-24 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 24 января 2023 года размещена статья Гия Двали, Заза Н. Османова (Gia Dvali, Zaza N. Osmanov) из Университета Людвига Максимилиана в Мюнхене (Германия), Физического института Макса Планка в Мюнхене (Германия), Тбилисского свободного университета (Грузия), Грузинской национальной астрофизической обсерватории имени Харадзе в Абастумани (Грузия): «Черные дыры как инструменты для квантовых вычислений продвинутых внеземных цивилизаций» («Black holes as tools for quantum computing by advanced extraterrestrial civilizations»), (arXiv: 2301.09575). Развитие цивилизации напрямую связано с ее способностью эффективно хранить и обрабатывать информацию. Авторы обосновывают, что черные дыры являются наиболее эффективными конденсаторами квантовой информации. Соответственно, ожидается, что любая достаточно развитая цивилизация в конечном счете разработает квантовые компьютеры на основе черных дыр. Сопутствующее излучение Хокинга отличается разнообразием видов частиц. Благодаря этому инопланетные квантовые компьютеры будут излучать обычные частицы, такие как нейтрино и фотоны, в пределах потенциальной чувствительности наших детекторов. Это открывает новый путь для SETI, включая цивилизации, полностью состоящие из скрытых видов частиц, взаимодействующих с нашим миром исключительно посредством гравитации.
2023-01-23 На канале YouTube 23.01.23 выложена двадцать первая передача из серии "Что такое эвереттика" (https://www.youtube.com/watch?v=2A9EHG3x1PE).
2023-01-20 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 19 января 2023 года размещена статья Эрве Цвирна (Herve Zwirn) из Университета Париж-Сакле и Университета Париж 7 (Франция): «Интерпретация Эверетта и Дружественный солипсизм» («Everett interpretation and Convivial Solipsism»), (arXiv: 2301.07532). Автор показывает, как квантовые парадоксы, возникающие, когда мы принимаем стандартную реалистическую структуру (или структуру, в которой коллапс подразумевает физическое изменение состояния системы), исчезают, если мы отказываемся от идеи, что измерение связано (прямо или косвенно) с физическим изменением состояния. В концепции автора - Дружественном Солипсизме (ДС) - аналогично интерпретации Эверетта (ММИ) нет коллапса волновой функции. Но, в отличие от ММИ, существует только один мир. Для этого необходимо отказаться от нашей привычной картины мира. Реальность полностью относительна для каждого наблюдателя, и не существует абсолютной реальности, которую могли бы разделить все наблюдатели. Принимая во внимание тот факт, что у нас нет доступа к точке зрения другого наблюдателя, бессмысленно спрашивать, что “на самом деле” видел другой наблюдатель. Этот вопрос выходит за рамки феноменологической реальности первого наблюдателя. ДС вовсе не является солипсистской интерпретацией и допускает существование всех наблюдателей и не претендует на то, что реальность наблюдателя создается его мозгом. Каждый наблюдатель строит свою собственную феноменологическую реальность на основе реальности эмпирической. В этом смысле это своего рода реалистическая интерпретация, даже если концепция реальности глубоко отличается от обычной. ДС объясняет, что то, что видит наше сознание, ограничено классическими вещами, даже если сам мир не является классическим. ДС проводит четкое различие между тем, каков мир, и тем, что мы видим из него. Инопланетяне, по-разному ориентированные в ментальном плане, с по-другому устроенным мозгом, возможно, могли бы воспринимать как “классические для них” состояния, которые мы называем суперпозиционными состояниями.
2023-01-20 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 15 января 2023 года представлена статья Гопала Ядава (Gopal Yadav) из Индийского технологического института Рурки (Индия): «Мультивселенная в Бранемире Карча-Рэндалла» («Multiverse in Karch-Randall Braneworld»); (arXiv: 2301.06151). Предлагается модель, основанная на клиновидной голографии, которая может описать мультивселенную. Чтобы описать мультивселенную, рассматриваются 2n бран Карча-Рэндалла и предполагается, что различные d-мерные вселенные локализованы на этих бранах, которые встроены в одно более высокое измерение. Модель полезна для разрешения «парадокса дедушки». Утверждается, что возможно путешествовать между разными вселенными, потому что все они сообщаются друг с другом («все вселенные взаимодействуют через прозрачные граничные условия в точке сопряжения»). Чтобы избежать парадокса, человек может отправиться в другую вселенную, где его дедушка не живет, поэтому он не может убить своего дедушку. Авторы дали качественную идею для разрешения «парадокса дедушки», но детальный анализ требует дополнительных исследований в этом направлении с использованием клиновидной голографии. Описанные взаимодействия вселенных можно рассматривать как еще один вид «склеек».
2023-01-18 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 18 января 2023 года представлена статья Эмили Адлам (Emily Adlam) из Института философии Ротмана в Лондоне (Великобритания): «Есть ли у нас какое-либо жизнеспособное решение проблемы измерения?» («Do We Have Any Viable Solution to the Measurement Problem?»); (arXiv: 2301.06192). Автор полемизирует с Дэвидом Уоллесом (2022), который утверждает, что в настоящее время жизнеспособны только унитарные подходы к проблеме измерения. Э. Адлам считает, что унитарные подходы сталкиваются с серьезными эпистемологическими проблемами и поэтому проблема измерения остается нерешенной. Утверждается, что для того, чтобы избежать серьезных эпистемологических проблем, решением должен быть реалистический подход с одним миром (унитарная квантовая механика не предоставляет механизма для выделения уникального результата измерения для какого-либо одного наблюдателя). Унитарная квантовая механика, по-видимому, не описывает уникальный макроскопический мир: в целом она порождает большое количество наложенных друг на друга макроскопических возможностей, которые совсем не похожи на уникальную наблюдаемую реальность, которую мы переживаем. Таким образом, на первый взгляд, унитарная квантовая механика эмпирически неадекватна, поскольку она вообще не может предсказать какие-либо конкретные результаты измерений; проблему измерения можно рассматривать как проблему демонстрации того, как извлечь фактические предсказания из этого формализма. В частности, рассматривается подход "многих разумов", который представляет собой просто интерпретацию Эверетта с добавлением набора "разумов" таким образом, что разные умы переходят в разные ветви во время событий ветвления. Очевидно, что такой подход не является унитарным - только потому, что набор разумов добавляется к унитарной квантовой механике, поскольку разные умы оказываются в ловушке внутри изолированных ветвей. Интересно мнение автора, что существует класс идей, иногда упоминаемых в связи с интерпретацией квантовой механики, таких как ретрокаузальность и супердетерминизм, которые сами по себе не являются решениями проблемы измерения: они ничего конкретного не говорят о возникновении нашей общей наблюдаемой реальности, скорее это просто свойства, которыми может обладать или не обладать решение проблемы измерения (например, транзакционная интерпретация - это решение проблемы измерения, которое обладает свойством ретрокаузальности. По мнению автора, вполне вероятно, что проблема измерения в конечном счете будет решена не путем привязки к нашей классической интуиции, а путем дальнейшего отклонения от классической картины мира.
2023-01-16 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщил, что в архиве электронных препринтов 12 января 2023 года размещена статья Гислена Фурни (Ghislain Fourny) из Швейцарской высшей технической школы (ETH) Цюриха (Швейцария): «Пространство-время-случай: система координат для мультивселенной и ее применение для того, чтобы показать, что свободный выбор зависит от наблюдателя» («Space-time-hap: a coordinate system for the multiverse and its application to show that free choice is observer-dependent»); (arXiv: 2301.04549). Предлагается система координат, которая расширяет плоское четырехмерное пространство-время Минковского до более широкой структуры, которая идентифицирует событие не только в пространстве и во времени, но и в терминах возможного мира, с третьей категорией координат, называемых «случаем» («hap»), моделирующими непредвиденные обстоятельства и контрфактуалы. Цель координат «hap» состоит в том, чтобы формально зафиксировать контрфактуалы, которые, с точки зрения данного наблюдателя, находятся в определенном возможном мире, события, которые не происходят, но могли бы произойти. Семантически «hap» основан на бомовском конфигурационном пространстве, в котором начальные условия в определенный момент времени однозначно определяют траекторию. В предложенной структуре строго различают причинно-следственные зависимости (через время), статистические зависимости (через пространство) и контрфактуальные зависимости (через случай). В качестве примера используется схема, которая показывает, что предположение о свободном выборе не является абсолютным, а скорее зависит от выбранной системы отсчета: в то время как Алиса может видеть свободный выбор, который формально является односторонним однокоординатным переводом в «hap», Боб, находящийся в другой системе отсчета, может увидеть, что тот же самый выбор не сделан свободно, и вместо этого наблюдает контрфактуальную зависимость. Итак, разделение между возможными мирами может также зависеть от системы отсчета, то есть два наблюдателя могут расходиться во мнениях относительно того, происходят ли два пространственно-временных события в одном и том же мире или нет. В квантовой физике система может находиться в состоянии суперпозиции, что удачно воплощено в мысленном эксперименте с котом Шредингера, который пытается вывести суперпозицию на макроскопический уровень. Размер квантовых систем, которые мы можем построить, которые могут быть измерены в кубитах в квантовой информации и квантовых вычислениях, увеличивается с каждым годом, хотя темп этого увеличения медленный и также неизвестно, существует ли физический предел тому, чего можно достичь. Хью Эверетт предположил, что, когда мы выполняем такое измерение, вселенная разветвляется, и каждая ветвь полученной таким образом мультивселенной соответствует одному возможному результату измерения: случаю («hap»); (многомировая интерпретация (ММИ) квантовой физики). Картина древовидной и разветвляющейся вселенной для процесса измерения на самом деле тесно связана с предположением о свободном выборе. Это связано с тем, что одна из формулировок свободного выбора состоит в том, что свободно выбранная случайная величина, расположенная где-то в пространстве-времени, независима от всего, что не находится в пределах ее будущего светового конуса. Древовидная структура миров существует и в копенгагенской интерпретации, как чисто теоретическая возможность. Вопрос о том, реальны альтернативные возможные миры или нет, находятся они в соответствии с ММИ или с механикой Бома, является предметом интенсивных дебатов. Но, даже если бы мы считали, что эти миры нереальны, они, тем не менее, являются частью теоретических концепций как альтернативные случайности, как “то, что могло бы быть”.
2023-01-16 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщил, что в архиве электронных препринтов 13 января 2023 года размещена статья Г. Оливейра-Нето, Д. Л. Канедо, Г. А. Монерат (G. Oliveira-Neto, D. L. Canedo, G. A. Monerat) из Федерального университета Жуис-де-Фора, Государственного университета Рио-де-Жанейро (Бразилия): «Вероятность туннелирования для рождения вселенных с излучением, космологической постоянной и специальным потенциалом» («Tunneling probability for the birth of universes with radiation, cosmological constant and an ad hoc potential»); (arXiv: 2301.05056). Фундаментальным направлением исследований в области квантовой космологии (КК) является проблема интерпретации. Поскольку Копенгагенскую интерпретацию квантовой механики нельзя использовать для системы, состоящей из всей Вселенной, было введено несколько иных интерпретаций квантовой механики. Первой из них была концепция Де Бройля-Бома или причинно-следственная интерпретация. Другая важная интерпретация была сформулирована Хью Эвереттом III и известна как интерпретация многих миров (ММИ). Более поздняя интерпретация квантовой механики, которая может быть использована в КК, - это согласованные или декогерентные истории. Одно из самых интересных объяснений рождения Вселенной в КК, - это спонтанное творение из ничего. Вселенная должна преодолеть барьер через туннель, чтобы родиться с конечным размером. Авторами описано рождение Вселенной с помощью туннельного механизма для любой кривизны пространственных сечений, то есть для положительной, отрицательной или нулевой кривизны. Вычислены вероятности туннелирования для рождения различных моделей Вселенной и проведено их сравнение.
2023-01-09 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 09 января 2023 года размещена статья Ларисы Альбантакис, Роберта Прентнера, Иэна Дарема (Larissa Albantakis, Robert Prentner, Ian Durham) из Университета Висконсин–Мэдисон (США), Университета Людвига-Максимилиана в Мюнхене (Германия), Колледжа Святого Ансельма в Манчестере (США), Ассоциации математической науки о сознании в Мюнхене (Германия): «Измерение интегрированной информации квантового механизма» («Measuring the integrated information of a quantum mechanism»); (arXiv: 2301.02244). Авторы исследуют, совместима ли интегрированная теория информации (ИТИ), созданная как теория сознания, с квантовой механикой как теорией микрофизики. Они представили расширение новейшего формализма ИТИ (ИТИ 4.0) для оценки интегрированной информации конечномерных квантовых систем (например, квантовых логических элементов). Полученные результаты должны послужить теоретической основой для изучения связи между сознанием, причинно-следственной связью и физикой, от классической до квантовой. Формализм ИТИ для классических систем начинается с матрицы вероятностей перехода, что соответствует полному набору переходных вероятностей (из каждого возможного состояния системы к каждому возможному состоянию системы). Это побудило некоторых критиковать ИТИ по концептуальным соображениям, поскольку подразумевает, что субъективный опыт будет зависеть не только от реальных состояний, в которых находится система в ходе ее динамической эволюции, но и от гипотетических контрфактуалов, которые могут никогда не произойти. В формализме квантовой интегративной теории информации (КИТИ) роль классической матрицы вероятности перехода берет на себя унитарное преобразование, применяемое к квантовому состоянию. Объем информации о причине в контексте квантового измерения зависит от способа концептуализации динамики измерений и, следовательно, от конкретной применяемой квантовой теории. Отсутствие или очень низкий уровень информации о причинах на квантовом уровне означал бы, что квантовые системы являются плохими субстратами для сознания. С помощью так называемых «без-коллапсных» моделей квантовой механики, таких как многомировая интерпретация (ММИ), можно было бы избежать технических трудностей, связанных с вероятностной динамикой измерений. Однако такие теории, которые полагаются только на матрицу плотности, кодирующую состояние Вселенной, и унитарные преобразования, определяющее ее эволюцию во времени, сталкиваются с проблемой, когда речь заходит об идентификации сознательных сущностей с помощью причинных, информационных или вычислительных средств. По мнению авторов, на фундаментальном уровне любые полученные сущности будут соответствовать подмножествам универсальной матрицы плотности, а не подмножествам внутри отдельных «ветвей». В то время как показатели КИТИ (и другие величины) могли бы формально применяться в рамках ветви, для этого нет принципиального обоснования с точки зрения фундаментальной теории сознания (причем понятие декогеренции не может решить эту проблему). Существует несколько концептуальных вопросов, которые необходимо решить, прежде чем формализм КИТИ может быть применен для идентификации сознательных систем, которые должны соответствовать всем “постулатам” ИТИ для того, чтобы быть субстратом сознания ИТИ. Так, информационный постулат ИТИ требует, чтобы системы и механизмы обладали определенной причинно-следственной силой. В то время как КИТИ в принципе более фундаментальна как расширение классического ИТИ, в настоящее время она ограничена обратимыми унитарными преобразованиями и, следовательно, не может быть непосредственно применена к необратимым процессам. Требуется метод получения макроскопических причинно-следственных моделей из микроскопической динамики. Понимание того, как необратимые логические функции могут возникать из обратимых квантовых цепей, является предметом будущих исследований.
2022-12-20 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 20 декабря 2022 года представлена статья Вэнь Чена и Ан Мин Вана (Wen Chen, An Min Wang) из Университета науки и техники Китая в Хэфэе (КНР): «Расширение метода многих взаимодействующих миров на негаусовскую модель» («An Extension of Many-Interacting-Worlds Method on Non-Guassian Model»); (arXiv:2212.09020). Авторы применили «новый подход» к стандартной квантовой механике, называемый методом многих взаимодействующих миров (МВМ), основанный на интерпретации многих миров и механике де Бройля-Бома. Метод МВМ Холл, Деккерт и Виземан предложили в 2014 году (M. J. W. Hall, D.-A. Deckert, and H. M. Wiseman, “Quantum phenomena modeled by interactions between many classical worlds,” Phys. Rev. X, vol. 4, p. 041013, Oct 2014). В этой концепции квантовую теорию можно понимать как предел континуума, в котором существует большое, но конечное число взаимодействующих классических “миров”. Здесь мир означает целую вселенную с четко определенными свойствами, определяемыми классической конфигурацией ее частиц и полей; каждый мир является классическим и без взаимодействия с другими мирами он эволюционирует в соответствии с классической ньютоновской физикой. Все квантовые эффекты возникают из (и только из) взаимодействий с другими мирами. Авторы статьи изучают потенциал межмирового взаимодействия и распространяют метод МВМ на негауссовские модели (пример такой модели - одномерный атом водорода); численное моделирование у них дает результат, согласующийся со стандартной квантовой механикой, и показывает применимость метода МВМ для их целей. Авторы отмечают, что не все вопросы МВМ еще решены и надеются на их решение в будущем.
2022-12-19 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 14 декабря 2022 года представлена статья Данко Георгиева и Элиаху Коэна (Danko Georgiev, Eliahu Cohen) из Института перспективных исследований в Варне (Болгария) и Университета Бар-Илан в Рамат-Гане (Израиль): «Меры запутанности для двухчастичных квантовых историй» («Entanglement measures for two-particle quantum histories»): (arXiv: 2212.07502). Авторы сообщают, что их работа мотивирована растущим интересом к концепции квантовой запутанности, включая недавнюю теоретическую разработку формализма “запутанных историй”. Формализм запутанных историй был разработан для того, чтобы позволить реконструкцию прошлой эволюции квантовой системы по измерениям в настоящем (J. Cotler and F. Wilczek, 2016; J. Cotler et al., 2017). Результирующие квантово-запутанные истории демонстрируют неклассические особенности, такие как суперпозиции временных эволюций и нарушение неравенств типа Белла. Однако запутанность во времени сама по себе не дает отдельным квантовым системам возможности создавать нелокальные корреляции между пространственно разделенными областями. Для этого необходимо учитывать квантовые взаимодействия между несколькими подсистемами и использовать возникающую в результате пространственную запутанность. В статье формализм запутанных квантовых историй распространяется на множество взаимодействующих квантовых подсистем; представлены количественные меры запутанности для двудольного случая. Авторы иллюстрируют неклассическую природу запутанных историй с использованием интерферометров Харди. (Л. Харди предложил в 1992 году интерферометрический эксперимент с использованием перекрывающихся интерферометров Маха–Цандера с электроном и позитроном, чтобы проверить предсказания квантовой механики в сравнении с предсказаниями теории локальных скрытых переменных). Авторы утверждают, что цепочки разных квантовых историй не являются гарантированно взаимно ортогональными. Они применяют формализм суммы по историям Фейнмана и вводят меры запутанности для двудольных квантовых историй. Запутанность квантовых историй является надежным предсказанием стандартного квантового формализма, который обладает большой объяснительной силой в отношении возникновения классически необъяснимых экспериментальных результатов в квантовых основаниях. Предлагаемый подход позволяет количественно оценить запутанность квантовых историй.
2022-12-19 На канале YouTube 19.12.22 опубликована тридцать третья "Беседа об эвереттике" (https://youtu.be/dhl-lit_UR0 ).
2022-12-18 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в журнале «Математические структуры и моделирование» 2022 N4 (64), опубликованы две новые статьи А.К. Гуца из Международного инновационного университета в Сочи (Россия):
2022-12-12 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 12 декабря 2022 года размещена статья Флориан Нойкарт с соавторами (Florian Neukart, Anders Indset, Markus Pflitsch, Michael Perelshtein) из Лейденского университета (Нидерланды), компании Terra Quantum AG, Университета Аалто (Финляндия): «Живем ли мы в [квантовой] симуляции? Ограничения, наблюдения и эксперименты по гипотезе моделирования» («Do we live in a [quantum] simulation? Constraints, observations, and experiments on the simulation hypothesis»); (arXiv: 2212.04921). Авторы отмечают, что наше постоянно расширяющееся понимание фундаментальных физических процессов, вероятно, приведет к созданию квантовых компьютеров, использующих квантовые эффекты для квантовомеханического моделирования природы во всей сложности, как это было задумано Ричардом Фейнманом. Один из предложенных сценариев касается запуска моделирования достаточной сложности, чтобы появилась разумная жизнь, намеревающаяся смоделировать вселенную, в которой, в свою очередь, возникает разумная жизнь. Причем, каждая из симуляций, независимо от сложности по сравнению с другими моделями в цепочке, со временем будет становиться вычислительно более сложной, поскольку глобальная термодинамическая энтропия всегда увеличивается, даже когда локальные термодинамические энтропии могут уменьшаться, когда, например, формируются астрономические объекты или возникает жизнь. Поскольку все вычислительные ресурсы конечны, каждый раз, когда ресурсы имитационного компьютера исчерпываются, все симуляции по цепочке прекращаются. В статье авторы обрисовывают ограничения на пределы вычислимости и предсказуемости во вселенной, которые затем используют для разработки экспериментов, позволяющих сделать первые выводы о том, участвуем ли мы, люди, в цепочке моделирования. В конечном итоге, в симуляции, в которой компьютер, моделирующий вселенную, управляется теми же физическими законами, что и симуляция, исчерпание вычислительных ресурсов остановит все симуляции по цепочке моделирования, если только не вмешается «внешний программист» (объект, выполняющий симуляцию и характеризующийся как внешний по отношению к объекту, выполняющему симуляцию и характеризующийся как внешний по отношению к симуляции), что мы, возможно, сможем наблюдать. Предложены идеи относительно того, как внешний программист может временно обойти истощение вычислительных ресурсов, осуществляя фундаментальные и серьезные физические вмешательства в цепочку симуляций, такие как изменение глобальной термодинамической энтропии, что может быть обнаружено во вселенной путем эксперимента или наблюдения. Сегодня квантовая теория широко понимается как неполная теория, и могут быть открыты новые модели, которые еще больше углубят наше понимание того, на что указывала квантовая теория до сих пор. Была ли создана наша вселенная и все, что в ней есть, или она возникла сама по себе? Уникальна ли наша вселенная или это всего лишь одна из многих, как описано много-мировой интерпретацией (ММИ) квантовой физики? В настоящее время нет однозначного ответа на эти вопросы. Авторы с нетерпнием ждут размышлений читателей и “захватывающей дискуссии”.
2022-12-10
2022-12-08 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 8 декабря 2022 года представлена статья Вишала Джонсона, Реймара Лейке, Филиппа Франка, Торстена Энслина (Vishal Johnson, Reimar Leike, Philipp Frank, Torsten Enßlin) из Института астрофизики Макса Планка в Гархинге и Мюнхенского университета Людвига-Максимилиана (Германия): «Измерение в унитарном мире» («Measurement in a Unitary World»): (arXiv: 2212.03829). В статье исследуется, как измерение может быть понято в контексте вселенной, развивающейся в соответствии с унитарной (обратимой) квантовой динамикой. Авторы создают структуру, в которой можно обойти “коллапс” волновой функции и где требуется только унитарная эволюции, для чего суммируют аксиомы квантовой механики. Они отмечают, что их подход очень похож на формулировку соотнесенного состояния Эверетта. А один из разделов статьи называется: «Множество наблюдателей, разные базисы и квантовый Дарвинизм». При унитарном измерении наблюдатель и измеряемая величина становятся коррелированными. Если измерения проводятся на разных базисах, разными наблюдателями, они могут не соглашаться с результатами друг друга, и состояния их реальностей могут отличаться. Это препятствует формированию объективной классической реальности у всех наблюдателей. Для поддержания унитарности процедуры измерения необходима подсистема среды. Должна быть (и должна была быть) достаточная корреляция, чтобы наблюдатели могли надежно наблюдать сигнал и соглашаться с другими наблюдателями о его реальности. Возможно, в конечном счете неудовлетворительное объяснение мог бы дать антропный принцип; так получилось, что мы находимся в одной из ветвей космической волновой функции с как раз нужной степенью корреляции. В частности, рассматривается наблюдение сигнала несколькими наблюдателями на разных базисах. Сигнал наблюдается и тем самым запутывается с несколькими наблюдателями. Каждый из этих наблюдателей, в свою очередь, далее наблюдается и запутывается с еще несколькими наблюдателями. Далее можно было бы наблюдать самого наблюдателя, и это приводит к сложной сети запутанности. Это дает объяснение эффективной необратимости процедуры измерения; многим системам пришлось бы вступить в сговор, чтобы собраться вместе и отменить измерение. Все это в итоге приводит к появлению “объективной классической реальности”. Как может и может ли возникнуть концепция реальности, включающая сети измерений в различных базисах, оставлено для будущих исследований. В случае изолированного наблюдателя нет дополнительных "копий" состояния исходного сигнала и, следовательно, его состояние субъективно. Они попытались создать единую структуру для объяснения измерений в квантовом мире, избегая коллапса волновой функции. Явления интерференции в описанной структуре авторы собираются обсудить в последующих публикациях.
2022-12-07 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сделал дополнение к опубликованному 06.12.22 реферату работы Стивена Д. Х. Хсу: «Декогеренция и квантовое измерение: Пропущенная лекция», представленной на сайте МЦЭИ 06.12.2022 года, в которой автор утверждает, что «макроскопические состояния суперпозиции уже реализованы в лабораторных условиях (K. S. Lee et al. 2021; L. Mercier de L’Epinay et al. 2.021)». Указанные Хсу ссылки относятся к следующим работам:
2022-12-06 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 6 декабря 2022 года представлена статья Стивена Д. Х. Хсу (Stephen D. H. Hsu) из Мичиганского государственного университета (США): «Декогеренция и квантовое измерение: Пропущенная лекция» («Decoherence and Quantum Measurement: The Missing Lecture»); (arXiv:2212.02391). Автор отмечает, что декогеренция и квантовые измерения обычно не учитываются в стандартных курсах по квантовым измерениям в квантовой механике. Но студенты, конечно, имеют право на более глубокие объяснения (эта лекция — для них). То, что обычно называют измерением, на самом деле представляет собой непрерывный процесс, который является результатом запутанности между измеряемым объектом и многими степенями свободы в измерительном устройстве или местной окружающей среде. По мере того, как отдельные ветви макроскопических состояний суперпозиции запутываются со степенями свободы окружающей среды, они теряют связь друг с другом. При эволюции Шредингера, которая является унитарной, ветви никогда полностью не исчезают (дается ссылка на докторскую диссертацию Х. Эверетта). Фактически, изолированные квантовые системы, описываемые эволюцией Шредингера, могут большую часть времени проводить в состояниях макроскопической суперпозиции. Макроскопический состояния суперпозиции уже реализованы в лабораторных условиях (K. S. Lee et al. 2021; L. Mercier de L’Epinay et al. 2021); нет экспериментальных свидетельство против возможности того, что читатель может находиться в состоянии суперпозиции, когда читает эту статью. Основной открытой проблемой теории является объяснение правила Борна, связывающего вероятности с результатами измерений состояний суперпозиции, что требует дальнейшего обоснования.
2022-12-03 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 27 ноября 2022 года представлена статья К. Сримана Редди (K. Sreeman Reddy) из Индийского технологического института в Мумбаи (Индия): «Времениподобный запутанный остров в начальной сингулярности во вселенной JT FLRW (Λ>0)» («A timelike entangled island at the initial singularity in a JT FLRW (Λ>0) universe»): (arXiv: 2211.14893). Информационный парадокс черной дыры (ЧД) (если ЧД испаряются и исчезают, то и информация, содержащаяся в них, уничтожается, что нарушает фундаментальный физический закон, гласящий, что информация никогда не может быть уничтожена) недавно был разрешен. Ключом к разрешению парадокса стала концепция под названием «острова». Эти «острова» образуются внутри ЧД и «запутаны» с пространственно отделенным внешним излучением Хокинга. Авторы показывают, что в космологиях FLRW (Friedmann–Lemaıtre–Robertson–Walker) с положительной космологической постоянной и без пространственной кривизны (то есть и в нашей Вселенной) также могут существовать подобные острова запутанности. Они предположили, что рецепт «острова» действителен даже тогда, когда остров является не пространственноподобно, а времениподобно запутанным (то есть запутанным во времени). Тогда информация о частицах, ушедших за горизонт, не теряется. Временная запутанность — это не спекулятивная идея; она экспериментально подтверждена (E. Megidish et al. 2013). Это просто более сильная форма корреляции между прошлым и будущим, чем та, что возможна в классической физике. Например, измеряя излучение Хокинга, мы можем получить информацию о частицах, которые ушли за горизонт событий непосредственно из прошлого, когда эти частицы еще находились внутри вселенной нашего наблюдателя. Временная эволюция любой квантовой системы не может быть понята классически; временная запутанность обязательно присутствует в любой квантовой теории, хотя относительно мало изучена.
2022-11-28 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 28 ноября 2022 года представлена статья Эдуарда Фонсека да Нова Крус и Дэвида Мекли (Eduarda Fonseca da Nova Cruz, David Möckli) из Федерального университета Риу-Гранди-ду-Сул в Порту-Алегри (Бразилия): «Опровержение нелокальности Белла» («Rebuttal to Bell nonlocality»); (arXiv: 2211.13325). В последнее время появилась новая волна теорем запрета, связанных с мысленными экспериментами, развиваются теории декогеренции и квантовых вычислений, а премии, присуждаемые исследователям основ квантовой механики («Нобелевская премия по физике 2022 г. и Премия за Прорыв в фундаментальной физике 2023 г.» («The Nobel Prize in Physics 2022 and The 2023 Breakthrough Prize in Fundamental Physics») возродили интерес к интерпретационным вопросам. Автор рассматривает как наиболее приемлемые теории супердетерминизм и механику Эверетта, которые, по его мнению, обеспечивают причинное, детерминированное опровержение нелокальности Белла и локальное описание квантовой механики. Оба эти подхода часто отвергаются на основе одной только психологии. Констатируются два подхода к философии науки: инструменталистские взгляды, обычно принимаемые сторонниками супердетерминизма, и объяснительные подходы, принятые «эвереттианцами» (Дойч, 2016; Уоллес, 2012). В контексте инструментализма роль экспериментов заключается в повышении достоверности конкретной теории; лучшие теории - это те, которые дают лучшие предсказания. Согласно автору статьи, философия науки Дойча, основанная на взглядах Поппера, напротив, рассматривает фундаментальную науку как объяснительную. Тогда теория сопоставляется не с конкретным предсказанием, а с гипотетическими объяснениями, которые определяют онтологию. Однако, научная теория может быть опровергнута только в том случае, если у нее будет лучший соперник. Автор использует философию Дойча, чтобы противопоставить супердетерминизм механике Эверетта. Если в эксперименте неоднократно наблюдается один и тот же результат, это может соответствовать как супердетерминизму, так и механике Эверетта. По мнению автора, супердетерминизм был бы лучшим объяснением, но если оставить только супердетерминизм как хорошую непревзойденную теорию, его нельзя опровергнуть.
2022-11-28 На канале YouTube 28 ноября опубликована тридцать вторая встреча из цикла "Беседа об эвереттике" по теме « Квантовый эффект Зенона» https://www.youtube.com/watch?v=lGvNUSKYZGY
2022-11-20 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 8 ноября 2022 года представлена статья Лоренцо Лоренцетти (Lorenzo Lorenzetti) из Бристольского университета (Великобритания): «Функционализация волновой функции» («Functionalising the wavefunction»): (arXiv: 2211.04360; «Studies in History and Philosophy of Science», Volume 96, December 2022, Pages 141–153). Функционализм — это точка зрения, согласно которой быть x — значит играть роль x. Эта статья защищает функционалистский взгляд на трехмерные объекты в контексте реализма волновой функции (РВФ), который может объяснить, как мы можем восстановить трехмерные объекты из волновой функции. (В нашем случае применить функциональное понимание 3D-объектов означает охарактеризовать их в терминах динамических уравнений классической механики. В конечном счете быть 3D — значит вести себя в соответствии с этими законами). В частности, автор выступает за новую версию РВФ с точки зрения функционально-редукционистского подхода в стиле Дэвида Льюиса (1970). Функциональный редукционизм характеризует межтеоретическую редукцию как восстановление поведения верхнего уровня, описываемого редуцированной теорией, в терминах теории нижнего уровня. Центральное ядро РВФ, защищаемое Дэвидом Альбертом (1996, 2013, 2015) и Алиссой Ней (2012, 2015, 2020, 2021a, 2021b), заключается в следующем: квантовая волновая функция представляет собой поле, живущее в 3N-мерном конфигурационном пространстве. Это высоко размерное поле – все, что существует фундаментально, и конфигурационное пространство следует рассматривать как фундаментальное пространство нашей Вселенной. Таким образом, проявленный трехмерный мир не является фундаментальным. При функциональном редукционизме состояния волновой функции оказываются идентичными конфигурациям классических 3D частиц, когда они ведут себя соответствующим образом - то есть именно тогда, когда / где нам нужно иметь 3D-объекты, т.е. в тех контекстах научной практики, в которых мы рассматриваем квантовые системы как (приблизительно) классические системы. Одна из целей автора - проложить путь для применения функционально-редукционистского подхода, представленного здесь, к другим контекстам, таким как квантовая гравитация, эвереттианский подход Уоллеса (2012). В контексте РВФ – то, что мы видим, как численно различные (запутанные) частицы в трехмерном пространстве, на самом деле - просто проявление одной более фундаментальной сущности в многомерном пространстве. В отношении конкретных версий квантовой механики, которые автор может одобрить (например, квантовая механика Эверетта и т. д.), можно выделить различные виды РВФ, которые влекут за собой различные представления о фундаментальной онтологии мира (Альберт. 2013). Грубо говоря, в зависимости от того, какую теорию некто защищает, он будет утверждать или что многомерная волновая функция — это все, что существует фундаментально, или - что мы должны постулировать дополнительный фрагмент онтологии в 3N-мерном пространстве.
2022-11-11 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 9 ноября 2022 года представлена статья Эдди Кеминг Чена (Eddy Keming Chen): «Вентакулюс: Реализм матрицы плотности встречается со стрелой времени» («The Wentaculus: Density Matrix Realism Meets the Arrow of Time») из Калифорнийского университета в Сан-Диего (США): (arXiv: 2211.03973). (Эдди Кеминг Чен выступил с докладом: «Строгий детерминизм» на семинаре по многомировой интерпретации квантовой механики в Тель-Авиве. 18–24 октября 2022 г.). Дэвид Альберт (2000, 2015) и Левер (2007, 2012), назвали свою теорию, которая предполагает распределение вероятностей по всем возможным физическим мирам - "Ментакулюс". Автор обозначил представленную им теоретическую альтернативу как "Вентакулюс" - новый подход к стреле времени в квантовой вселенной. Вентакулус совместим ровно с одним номологически возможным начальным квантовым состоянием, в то время как Ментакулус совместим с бесконечно многими. Для Вентакулюса Эверетта постулируется, что состояние Вселенной описывается универсальной матрицей плотности (Chen 2022c); существует только одна возможная история универсальной матрицы плотности и, следовательно, только одна возможная история мультивселенной Эверетта. Согласно автору, Вентокулюс Эверетта — это первый реалистичный и простой пример сильного детерминизма. Даже если рассматривать квантовую механику Эверетта как неправильное решение проблемы измерения, было бы догматично считать ее невозможной, поскольку она может быть эмпирически эквивалентна другим квантовым теориям. Следовательно, сильный детерминизм может быть ближе к реальному миру, чем мы себе представляли. Вентакулюс освещает различия между реализмом матрицы плотности и реализмом волновой функции и демонстрирует преимущества разрешения фундаментальных смешанных состояний. Это имеет значение для дискуссий о законах, случайности, хаотичности, симметриях, неопределенности, детерминизме и квантовой реальности. Если Вентакулюс верен, то решение загадок стрелы времени и квантовой онтологии глубоко взаимосвязаны. Природа настолько едина, что мы можем решить обе проблемы одним способом.
2022-11-11 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 11 ноября 2022 года представлена статья Денниса Дикса (Dennis Dieks) из Утрехтского университета (Нидерланды): «Перспективный квантовый реализм» («Perspectival Quantum Realism»): (arXiv: 2211.05674). Кюбисты (QBists) и квантовые прагматики утверждают, что квантовую механику следует рассматривать не как представление физических систем, а скорее как агент-ориентированный инструмент для обновления представлений о таких системах. Неотъемлемой частью таких взглядов является то, что разные агенты могут иметь разные убеждения и могут назначать разные квантовые состояния. В результате получается набор точек зрения, ориентированных на агента, а не уникальное представление физического мира; то есть квантовый мир рассматривается как состоящий из набора точек зрения, связанных с возможно противоречивыми описаниями физических систем и их свойств. Автор статьи утверждает, что проблемы, выявленные кюбизмом и квантовым прагматизмом, не требуют отказа от идеала в виде объективного существования физического мира; можно воспользоваться теми же стратегиями решения головоломок, которые используются кюбистами и прагматиками, приняв «перспективный квантовый реализм». Аргументы в поддержку перспективизма не зависят от введения субъективизма в интерпретацию квантовой механики. Перспективы также могут быть определены в отношении физических систем вместо агентов. Однако, перспективный квантовый реализм может порождать радикальный фрагментализм, согласно которому различные точки зрения полностью независимы друг от друга и, как правило, предлагают очень разные и противоречивые описания мира — хотя все они необходимы для полного описания реальности. О фрагменталистской интерпретации квантовой механики см: Саймон (Simon, J.: Fragmenting the wave function. In Bennett, K. and Zimmerman, D. (eds.), Oxford Studies in Metaphysics 11, 123–145. 2018); предполагается, что суперпозиция квантовых состояний соответствует совокупности фрагментов физического мира. Центральная идея фрагментализма заключается в том, что мир — это не монолитное целое, построенное из взаимно совместимых фактов, а скорее набор фрагментов, причем каждый фрагмент содержит взаимно совместимые факты, в то время как разные фрагменты несовместимы. Реальность формируется всей совокупностью всех фрагментов; для ее описания, описания совокупности фактов в мире, используется бесконечное множество независимых точек зрения (эти идеи были использованы для разработки фрагменталистского анализа специальной теории относительности).
2022-11-07 На канале YouTube опубликована тридцать первая "Беседа об эвереттике" https://youtu.be/fKnmRKh0QaU.
2022-11-04 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 03 ноября 2022 года представлена статья Теодора Стремберга, Питера Шиански, Марко Тулио Квинтино, Майкла Антесбергера, Ли Розема, Айрис Агрести, Часлава Брукнера, Филипа Вальтера (Teodor Strömberg, Peter Schiansky, Marco Túlio Quintino, Michael Antesberger, Lee Rozema, Iris Agresti, Časlav Brukner, Philip Walther) из Венского университета, Института квантовой оптики и квантовой информации в Вене (Австрия), Сорбоннского университета (Франция): «Экспериментальная суперпозиция временных направлений» («Experimental superposition of time directions»); (arXiv: 2211.01283). В макроскопическом мире время внутренне асимметрично, течет в определенном направлении, из прошлого в будущее. Однако то же самое не обязательно верно для квантовых систем, поскольку некоторые квантовые процессы приводят к действительным квантовым эволюциям при обращении времени вспять. Предполагая, что такие процессы могут быть исследованы в обоих временных направлениях, можно рассматривать квантовые процессы, исследуемые в когерентной суперпозиции прямого и обратного временных направлений. Это приводит к более широкому классу квантовых процессов, чем те, которые рассматривались до сих пор в литературе, включая процессы с неопределенным причинно-следственным порядком. Авторы впервые экспериментально демонстрируют операцию, принадлежащую к этому новому классу: квантовый переворот времени (этот новый вид процесса, неотделимый от стрелы времени, был недавно представлен теоретически (Giulio Chiribella, Zixuan Liu. 2020)). Используя фотонную реализацию этой операции с помощью оптического интерферометра, авторы реализовали когерентную суперпозицию произвольных унитарных преобразований и их обращение во времени. Ее применили к игре, сформулированной как задача различения между двумя наборами операторов; показано вычислительное преимущество новой стратегии перед стратегиями, использующими фиксированное направление времени, и даже теми, которые имеют неопределенный причинно-следственный порядок.
2022-11-02 Известный философ, филолог, культуролог, литературовед, литературный критик, лингвист, эссеист М.Н.Эпштейн опубликовал на фейсбуке следующий пост:
2022-11-02 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 1 ноября 2022 года представлена статья Раони У. Арройо, Джоннаса Р. Б. Аренхарта (Raoni W. Arroyo, Jonnas R. B. Arenhart) из Кампинасского университета, Федерального университета Санта-Катарины, Федерального университета Мараньяо (Бразилия): «Откуда глубокий реализм в квантовой механике Эверетта?» («Whence deep realism for Everettian quantum mechanics? »); (arXiv: 2210.16713; готовится к публикации в журнале "Foundations of Physics"). «Поверхностные» и «глубокие» версии научного реализма можно различить следующим образом: поверхностный реалист удовлетворяется верой в положения наших лучших научных теорий; глубокие реалисты утверждают, что реализм может быть обоснованным, только если такие сущности описываются в метафизических терминах. Авторы утверждают, что эта методологическая дискуссия может быть плодотворно применена к квантовой механике Эверетта. В эвереттовской квантовой механике (EQM) существует как минимум две онтологии решения проблемы измерения: интерпретация относительных фактов (RFI), которая представляет собой интерпретацию одного мира (Barrett, 2011; Conroy, 2012), онтология которой выражена «эвереттианским актуализмом» (EA) Конроя (Conroy, 2018); и многомировая интерпретация (MМИ), (Wallace, 2012), которая постулирует множество миров и чья онтология хорошо отражена в модальном реализме (Wilson, 2020). Авторы указывают на дилемму для реалистов: либо у нас нет доступных метафизических инструментов, чтобы ответить на требования глубокого реализма, и реализм в данном случае не оправдан, либо такие требования метафизического оформления для научного реализма не являются обязательными. Cпор традиционно сосредоточен исключительно на существовании миров (будь то в пользу или отрицанию их существования), а не на их природе. В многомировой интерпретации (MМИ) — миры реальны, поэтому кажется, что “они не являются возможными мирами в том смысле, который используется, например, в модальной логике”. Однако множественность миров в MМИ — это один из способов рассмотрения возможных миров, а именно, отношение к ним как к реальным, а не просто возможным. Являемся ли мы в этом контексте глубокими реалистами в отношении эвереттовской квантовой механике (EQM)? Нет. Имеем ли мы право углубляться в метафизику, чтобы метафизически поддержать нашу современную лучшую науку? Да. Но должны ли мы это делать? Авторы в этом не уверены и не готовы утверждать, что обоснованный реализм — это исключительно та форма реализма, которая основана на глубоких метафизических вопросах. Научный реализм — это позиция, которая больше заинтересована в отношениях между теорией и миром, поэтому она не может зависеть от (хрупкого) обоснования метафизики как дисциплины, чтобы иметь возможность узаконить себя как метанаучное отношение.
2022-10-26 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что 18 октября 2022 года на семинаре по многомировой интерпретации квантовой механики в Тель-Авиве (18–24 октября 2022 г.) Маркус Арван (Marcus Arvan) из Университета Тампа во Флориде (США) выступил с докладом: «Переосмысление многомировой интерпретации квантовой механики: навигационное счисление и гипотеза симуляции P2P» («Reinterpreting the Many-Worlds Interpretation of Quantum Mechanics: Dead Reckoning and the P2P Simulation Hypothesis»); (https://www.youtube.com/watch?v=mvD4jZ2R-ps&list=PLNiWLB_wsOg4TVkzPLNZx6uwlQzZVTinl. Marcus Arvan). 31 января 2015 года в журнале «Scientia Salon» представлена статья Маркуса Арвана: «Гипотеза «пиринговых отношений» и новая теория свободы воли» («The Peer-to-Peer Hypothesis and a New Theory of Free Will»); (https://scientiasalon.wordpress.com/2015/01/30/the-peer-to-peer-hypothesis-and-a-new-theory-of-free-will-a-brief-overview/). Ник Бостром (2003) хорошо известен своим утверждением о том, что мы, скорее всего, живем в симуляции. Примерно так же Дэвид Чалмерс (2003) утверждал, что мы должны рассматривать “гипотезу симуляции” как метафизическую гипотезу относительно того, из чего на самом деле состоит наш мир. Наконец, гипотеза моделирования мира набирает некоторую популярность в физике. Автор утверждает, что новая версия гипотезы симуляции — гипотеза симуляции Peer-to-Peer (P2P) — не только подразумевается несколькими серьезными гипотезами в философии и физике, но и обещает предоставить единое объяснение множества сбивающих с толку физических и метафизических особенностей нашего мира, такие как: 1) Этернализм в отношении физических объектов и свойств: прошлые, настоящие и будущие физические объекты и свойства существуют “вне времени”. 2) Дуализм разума и тела: разум, по крайней мере, частично состоит из нефизических свойств или субстанции (ий). 3) Субъективность в отношении течения времени: течение времени происходит только в сознании. 4) Только одна временная шкала (наша) актуализируется или сознательно переживается наблюдателями. 5) Голографический принцип: физическая вселенная — это просто ряд упорядоченной двумерной информации (т.е. 1 и 0), “записанной” на космологическом горизонте. 6) Гипотеза мультивселенной: наблюдаемая физическая вселенная — это всего лишь небольшая часть огромной мультивселенной альтернативных возможностей. Симуляция P2P - одноранговое, «пиринговое» сетевое моделирование, в котором ни один компьютер в сети не служит окончательным представлением объектов и свойств в симуляции, но в котором “симуляция” просто представлена параллельно на различных взаимодействующих компьютерах в сети. Симуляция P2P включает в себя широкий спектр “возможного прошлого, настоящего и будущего”; считывается в режиме реального времени; считывается с помощью множества внешних измерительных устройств (т.е. каждого компьютера в сети); все взаимодействуют параллельно, так что совместные измерения всех компьютеров в сети приводят к появлению единой наблюдаемой интерсубъективной реальности. Эти шесть особенностей моделирования P2P функционально идентичны гипотезам (1)-(6). Таким образом, если гипотезы (1)-(6) верны, то наша реальность функционально идентична пиринговой симуляции. Наш мир обладает рядом непонятных физических особенностей. Они включают в себя: квантовую суперпозицию, квантовую неопределенность, проблему квантовых измерений, корпускулярно-волновой дуализм, “коллапс” квантовой волновой функции, квантовую запутанность, планковскую длину; относительность времени для наблюдателей (отсутствие единых объективных “универсальных часов”). Интересно, что все восемь физических функций, перечисленных выше, естественным образом вытекают из структуры моделирования пиринговой сети: пиринговая симуляция просто представляет собой суперпозицию различных параллельных представлений моделируемой среды на разных компьютерах в сети (а именно, каждый компьютер имеет свое собственное, слегка отличающееся представление о том, где находятся вещи в симуляции, так что объединение различных представлений “реальности” это гигантская суперпозиция альтернативных состояний). Любое измерение, выполняемое любым отдельным измерительным устройством в сети P2P, также, таким образом, влияет на сеть в целом (поскольку то, что измеряет один компьютер, повлияет на то, что другие компьютеры в сети, вероятно, будут измерять в любой данный момент), что приводит к серьезной проблеме измерения. То есть, гипотеза моделирования P2P обещает дать единое объяснение многим сбивающим с толку физическим особенностям нашей реальности, для которых у нас в настоящее время нет оптимального объяснения. Важно, что независимо от того, какой бы физический "путь" через мультивселенную ни выбрало наше сознание, внутри этого пути всегда будет какое-то физическое объяснение, сохраняющее своего рода причинный детерминизм.
2022-10-25 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 20 октября 2022 года представлена статья Джорджа Ф. Р. Эллиса (George F R Ellis) из Кейптаунского университета (ЮАР) и Нового института в Гамбурге (Германия): «Физическое время и человеческое время» («Physical Time and Human Time»); (arXiv: 2210.10107). Автор отмечает, что работа: “Физическое время в пределах человеческого времени” (“Physical Time Within Human Time”. Грубер Блок и Монтемайор (Gruber et al. 2022, далее GBM), по сути, является ответом на статью: “Наведение мостов между нейробиологией и физикой времени”. (“Bridging the neuroscience and physics of time”. Бунамано и Ровелли (Bunamano и Rovelli. 2022, далее BR). В ней дается обзор различных взглядов на природу времени, в частности цитируются утверждения некоторых физиков и философов о том, что воспринимаемый ход времени (поток времени) является иллюзией, потому что мы живем во вневременной блочной вселенной. Это приводит к “проблеме двух времен”: проблематичность отношения истинного времени (физического времени), и проявленного времени (психологически переживаемого, но иллюзорного времени). BR поднимают два физических вопроса, лежащих в основе предполагаемой проблемы:
2022-10-25 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 21 октября 2022 года представлена статья Да-Вей Чиоу (Dah-Wei Chiou) из Национального университета Сунь Ятсена в Гаосюне, Тайваньского научного центра конденсированных сред, Национального Тайваньского университета в Тайбэе (Тайвань): «Квантовый ластик с отложенным выбором и парадокс ЭПР» («Delayed-choice quantum eraser and the EPR paradox»); (arXiv: 2210.11375). Квантовый ластик — это эксперимент с интерферометром, в котором информация о направлении каждого отдельного квантона (т. е. квантового объекта, такого как фотон) “помечена”, и поэтому интерференционная картина не видна, но информация о направлении позже может быть “стерта”, и, соответственно, интерференционная картина может быть изменена, “восстановлена”, по-видимому, демонстрируя какую-то ретро-каузальность. Автор рассматривает квантовый ластик с отложенным выбором, использующий интерферометр Маха-Цандера, демонстрируя, что он имеет точно такую же формальную структуру, что и эксперимент Эйнштейна-Подольского-Розена-Бома (ЭПР-Бома); поэтому эффект квантового стирания можно понять в терминах стандартной корреляции ЭПР. Тем не менее, квантовый ластик по-прежнему поднимает концептуальную проблему, выходящую за рамки стандартного парадокса ЭПР, если принять во внимание контрафактические рассуждения. Копенгагенская интерпретация и интерпретации многих миров (MМИ) дают одинаковый прогноз результатов измерений. Концептуально, однако, MМИ обеспечивает совершенно иную онтологическую структуру, в которой все возможные экспериментальные результаты существуют одновременно в универсальной волновой функции, и поэтому многие парадоксы квантовой механики просто исчезают. Как недостаток, на который не часто указывают, теоретический формализм MМИ не полностью согласуется с его практическим применением: он обеспечивает привлекательную онтологическую структуру, в которой классическое представление о нахождении в определенном состоянии отвергается, но на практике все равно приходится прибегать к (полуклассическим) рассуждениям об определенных состояниях, чтобы теоретически отразить эволюционную динамику. Впрочем, автор поддерживает мнение, что взаимодействие между измеряемым объектом и измерительным устройством в принципе может быть “сформулировано в квантово-механических терминах” (как постулируется в MМИ), “но оно должно быть понятно полуклассическим способом”.
2022-10-18 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 18 октября 2022 года представлена статья Кьяры Марлетто и Влатко Ведрала (Chiara Marletto, Vlatko Vedral) из Оксфордского университета (Великобритания): «Непредсказуемость вполне возможна в детерминированной вселенной» («Unpredictability is perfectly possible in a deterministic universe»); (arXiv: 2210.09050). Динамические законы унитарной квантовой теории (то есть уравнение Шредингера, или уравнение Гейзенберга, или их релятивистские обобщения) являются детерминированными. Такой детерминизм часто используется для аргументации против унитарной квантовой теории. Одна из самых популярных линий аргументации заключается в том, что детерминизм якобы устраняет возможность "свободной воли" (дается ссылка на «краткую заметку» Николя Жизена (Nicolas Gisin); (Швейцария); которая представлена в связи с семинаром по многомировой интерпретации квантовой механики в Тель-Авиве (18–24 октября 2022 г.); впервые работа появилась на французском языке в 2010 году): «Пандемия Мультивселенной» («The Multiverse Pandemic»); arXiv: 2210.05377). Во-первых, непредсказуемость вполне возможна в унитарной квантовой теории точно так же, как это возможно в стохастической модификации самой квантовой теории. (Хотя авторы не считают, что свобода воли требует непредсказуемости как необходимой характеристики физических законов). Во-вторых, концепция свободы воли расплывчата и плохо определена - таким образом, это шаткая основа для построения общего аргумента против физической теории. Все мы испытываем чувство спонтанности и автономности принятия наших решений, и приятно знать, что это чувство не противоречит нашему самому фундаментальному пониманию Вселенной; но для того, чтобы точно понять, как физические законы допускают свободу воли (или сознания, или творчества), нужна физическая теория этого, которой у нас в настоящее время нет. Другим аргументом против унитарной квантовой теории является то, что ее единственной доступной интерпретацией является так называемая Интерпретация “многих миров” (ММИ). Обычно кто-то принимает конкретную версию ММИ и выступает против нее. Это часто вырождается в самореферентную дискуссию об интерпретациях интерпретаций, которая уводит от физического содержания теории. Например, популярный аргумент состоит в том, чтобы использовать Бритву Оккама, чтобы либо сказать, что ММИ исключена, поскольку в ней слишком много миров, либо что это лучшая интерпретация, потому что в ней наименьшее количество аксиом. Авторы считают, что оба аргумента плохи, потому что "простота" Бритвы Оккама не может быть объективно определена количественно, и, следовательно, это вводящий в заблуждение критерий для оценки того, является ли теория хорошим объяснением. Унитарная квантовая теория последовательна; она обеспечивает хорошее объяснение всех экспериментальных наблюдений до сих пор, и (в отличие от некоторых ее стохастических вариантов) она также совместима со свойствами общей теории относительности, такими как локальность и принцип эквивалентности. Без сомнения, ММИ придется претерпеть изменения, чтобы точно приспособиться к гравитации, но авторы «держат пари», что непредсказуемость и детерминизм останутся здесь навсегда, вместе с другими явлениями, такими как суперпозиции и запутанность. Поэтому давно пора серьезно отнестись ко всем этим аспектам унитарной квантовой физики.
2022-10-17 На канале YouTube опубликована тридцатая встреча из цикла "Беседы об эвереттике" – «Эвереттика и нобелевская премия по физике».
2022-10-17 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 17 октября 2022 года представлена новая статья Овидиу Кристинел Стойка (Ovidiu Cristinel Stoica) из Национального института физики и ядерной инженерии в Бухаресте (Румыния): «Свобода в многомировой интерпретации» («Freedom in the many-worlds interpretation»); (arXiv: 2210.07596). В "Пандемии Мультивселенной" (arXiv: 2210.05377; см на сайте МЦЭИ 12.10.2022 года) Николя Жизен приводит интересный довод против многомировой интерпретации (MМИ), утверждая, что ей противоречит наша трудно-отрицаемая свобода воли. (Автор отмечает, что он не знает, что такое свобода воли, за пределами своего субъективного опыта; он лишь высказывает некоторые личные взгляды на логические возможности). Аргументы Жизена таковы: (1) MМИ детерминирована, навязывая нам выбор, (2) в MМИ происходят все наши возможные выборы, и (3) MМИ ограничивает креативность, потому что все взаимосвязано со всем остальным. Иначе говоря сформулировано наличие В ММИ функций: функция 1 (детерминизм). Поскольку динамика задается только уравнением Шредингера, MМИ является детерминированной. Функция 2 (несколько альтернатив). Все, что имеет ненулевую амплитуду, чтобы произойти, происходит в каком-то мире. Функция 3 (высокий уровень запутанности). Кажется, что все взаимосвязано со всем остальным. Автор утверждает, что каждая из этих функций MМИ на самом деле предоставляет больше свободы, чем может показаться. В общей волновой функции, содержащей множество миров, наблюдаемая система запутана с окружающей средой. Каждый раз, когда создаются новые миры, возникает новая запутанность. Стандартная квантовая механика (КM) позволяет избежать этого, сворачивая волновую функцию в конце каждого измерения, так что в итоге наблюдаемые степени свободы не запутываются с окружающей средой. Но в MМИ с каждым новым измерением возникает все большая запутанность. Такое же количество запутанности присутствует в механике Бома, которая требует такой же ветвящейся структуры, как MМИ, в противном случае “пустые ветви” будут мешать той, которая соотносится с позициями Бома, делая объекты нестабильными и нарушая правило Борна. В каждом мире запутанность именно такая, какой она должна быть в стандартной КM. И то, что происходит в одном мире, не зависит от других миров, если только ранее разделенные миры снова не вмешаются, что было бы большей проблемой для MМИ, чем слишком большая запутанность. Миры в MМИ независимы, поэтому ни один из этих миров не может ограничивать творчество в любом другом мире. Мир, в котором мы можем выбрать только что-то одно, а все остальное запрещено, ограничивает нашу свободу. Кроме того, даже в детерминированном мире в причинно-следственной цепи есть пробел: начальные условия. Что, если начальные условия не полностью определены в начале времени, но постепенно определяются по мере того, как делается больше наблюдений и вариантов? Как будто Бог оставил какой-то пробел параметров, определяющих начальные условия детерминированной вселенной, которые будут заполнены позже нашим собственным выбором. Чем больше способов заполнить пробелы начальных условий, тем больше возможностей свободы существует. А запутанность только добавляет еще больше возможностей, больше параметров с большим количеством пробелов, которые необходимо заполнить. Мы взаимосвязаны со всей остальной вселенной, и от нас зависит, позволим ли мы этим связям сковать нас или используем их как возможности влиять на мир. Какие бы способности мы ни развили в ходе нашей эволюции, включая то, что мы называем свободой воли или творчеством, они обусловлены не только противостоянием подсистем окружающей среде, но и сложным взаимодействием между ними. Являются ли эти способности свойствами нас как подсистем или целого?
2022-10-12 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 12 октября 2022 года представлена «краткая заметка» Николя Жизена (Nicolas Gisin) из Женевского университета (Швецария); заметка представлена в связи с предстоящим семинаром по много-мировой интерпретации квантовой механики в Тель-Авиве (18–24 октября 2022 г.); впервые работа появилась на французском языке в 2010 году): «Пандемия Мультивселенной» («The Multiverse Pandemic»); (arXiv: 2210.05377). Автор выступает против многомировой интерпретации (MМИ) квантовой теории. «Мультивселенная распространяется подобно болезни. Всевозможные сообщества были заражены Мультиверсом, многомировой интерпретацией квантовой теории. К счастью, как и в случае с другими разрушительными пандемиями, есть способы защитить себя. … Помните Лапласа: для достаточно обширного интеллекта будущее, как и прошлое, полностью определяется настоящим. … По общему признанию, связь между волей и материальным миром была довольно неуловимой, но Декарт дал ей название: шишковидная железа. Это было всего лишь название, но очень важное название: присвоение названия этому интерфейсу продемонстрировало, что существование свободной воли не противоречит детерминированной классической физике. … Детерминизм не случайно вернулся в новом обличье квантового физика: все, абсолютно все альтернативы происходили бы одинаково, все на равных основаниях. Реальный выбор больше не был возможен. Но самое страшное было еще впереди: всеобщая запутанность. Согласно новому мультиверсальному диктатору, материальный мир не только подчинялся детерминированным законам, но и представлял собой один большой чудовищный кусок («piece»), в котором все переплеталось со всем остальным. Не осталось места … для …возможного интерфейса между физикой и свободной волей. Источники всех сил, всех полей, всего были частью большой Ψ, волновой функции Мультивселенной, так диктатор велел людям называть своего нового Бога. Но, к счастью, сын (или внук) или бывшего диктатора был не так силен, как его предок. Немало физиков приняли другую религию, менее требовательную, чьей мантрой было “заткнись и вычисляй”. … Но “заткнись и вычисляй” — это не очень привлекательное кредо. И случилось то, чего боялись: пандемия Мультивселенной распространилась, достигнув сначала самых слабых, многие молодые физики были инфицированы. Аргументы священников диктатора были просты и, следовательно, эффективны: “наша религия самая простая, следовательно, она должна быть истинной”. А для скептиков они добавили: “Если вы не верите в нашего диктатора, вы будете срезаны бритвой Оккама”. Что? Бритва Оккама пойдет на пользу Мультивселенной? Да, утверждали священники, потому что, отвергая многомировость, вы совершаете преступление, изменяя уравнение Шредингера. Добавление поправок к знаменитому уравнению Шредингера хуже, чем добавление миров, утверждали священники. Аргумент казался веским, а пандемия все распространялась и распространялась. К ужасу, не только вернулось господство детерминизма, но и не было маленькой ниши, где раньше находилась шишковидная железа. Пришло время сделать шаг назад. Я свободное существо, я наслаждаюсь свободой воли. Я знаю это гораздо больше, чем что-либо еще. Как же тогда уравнение, даже по-настоящему красивое уравнение, может сказать мне, что я неправ? Я знаю, что я свободен гораздо глубже, чем когда-либо узнаю какое-либо уравнение. Следовательно, и, несмотря на высокопарные речи, я нутром чую, что уравнение Шредингера не может быть полной историей; должно быть что-то еще. “Но что?” – отвечают жрецы диктатора. По общему признанию, я не знаю, но я знаю, что гипотеза Мультивселенной неверна просто потому, что Я знаю, что детерминизм — это обман».
2022-10-09 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 3 октября 2022 года представлена статья Евгения О. Киктенко (Evgeniy O. Kiktenko) из Математического института им. Стеклова РАН в Москве, Центра геоэлектромагнитных исследований Института физики Земли им. Шмидта РАН в Троицке, Национального университета науки и технологий “МИСИС” в Москве (Россия): «Исследование квантовых явлений, индуцированных постселекцией, с помощью двух-временного тензорного формализма» («Exploring postselection-induced quantum phenomena with the two-time tensor formalism»); (arXiv: 2210.01583). В рамках векторного формализма двух состояний (TSVF) состояние квантовой частицы описывается парой векторов, где один вектор, определяемый пре-селекцией, эволюционирует вперед во времени, в то время как второй вектор|, определяемый постселекцией, эволюционирует назад из будущего в прошлое. С практической точки зрения, одним из наиболее важных понятий, появляющихся в рамках постселекции и TSVF, являются слабые значения наблюдаемых. Первоначально TSVF был сформулирован относительно пары чистых состояний. Важное расширение пришло с введением вспомогательной частицы и выполнением селекции сообщений относительно запутанного состояния. Создание запутанности между прямым и обратным эволюционирующими состояниями вектора с двумя состояниями и приводит к концепции обобщенного вектора с двумя состояниями. Настоящая работа посвящена дальнейшему развитию эффективного описания квантовых состояний при наличии постселекции. Автор представил двух-временный тензорный формализм, объединяющий в общем виде стандартный квантово-механический формализм без постселекции и симметричный по времени векторный формализм двух состояний, который имеет дело с постселекционными состояниями. Чтобы продемонстрировать возможности двух-временного тензорного формализма, использован 7-кубитный, доступный в облаке, зашумленный сверхпроводящий квантовый процессор, предоставленный IBM. Постселекция запутанных состояний приводит к явлениям обращения времени вспять, включая появление замкнутых времени-подобных кривых (CTC), рассматриваемых как теоретически, так и экспериментально (M. Laforest, J. Baugh, and R. Laflamme. 2006; S. Lloyd et al. 2011). По мнению автора, представленный им формализм полезен в контексте изучения уже проведенных экспериментов по наблюдению путешествия во времени, вызванного постселекцией и квантовой телепортацией, а также в изучении квантовой контекстуальности, основ квантовой физики, разработки алгоритмов квантовых вычислений и протоколов квантовой связи.
2022-10-03 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 30 сентября 2021 года представлена работа Бруно Гальвани (Bruno Galvan); (∗ b.galvan@virgilio.it; www.brunogalvan.it; Италия): «Невероятностная типичность с применением к квантовой механике» (Non-probabilistic typicality, with application to quantum mechanics); (arXiv: 2209.14985). Автор развивает две гипотезы. Первая гипотеза состоит в том, что в природе существуют случайные явления, которые не являются вероятностными, т. е. которые не могут быть представлены вероятностным пространством. Эти явления будут называться «типичными» (вместо вероятностных) явлений. Поскольку вероятностные явления представлены вероятностными пространствами, типичные эксперименты могут быть представлены пространствами типичности, в котором мера вероятности заменена гораздо менее структурированной мерой типичности. Вторая гипотеза этой статьи, которая фактически мотивирует первую, заключается в том, что эволюция квантовой частицы (или системы квантовых частиц) в отсутствие измерений является типичным явлением. Результатом является новая формулировка квантовой механики, которая не рассматривает проблему измерения, а также, по-видимому, позволяет избежать некоторых недостатков механики Бома и интерпретации многих миров (ММИ). Согласно автору, сторонниками ММИ отвергается любая онтология помимо волновой функции. И, «кажется», до сих пор отсутствует однозначное и общепризнанное определение мира в ММИ. Также хорошо известная слабость ММИ - отсутствие четкого вывода вероятностных закономерностей Природы. Автор считает, что его гипотезы позволяют дать однозначное, хотя и расплывчатое, определение ветви или «мира» волновой функции, как «сепараторов» («separators»). «Сепаратор» - существование части волновой функции, которая пространственно отделена от остальной волновой функции и которая развивается независимо от нее. (В рамках концепции Бома траектории частиц остаются внутри сепараторов; или сепараторы волновой функции представляют собой трубы, генерируемые потоком Бома).
2022-10-03 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что Фонд Breakthrough Prize объявил лауреатов премии Breakthrough Prize и New Horizons в 2022 году. Церемония награждения состоится 3 ноября в Исследовательском центре Эймса. В области фундаментальной физики премия за Прорыв (учреждена Ю. Мильнером) присуждена четырем пионерам в области квантовой информации «за основополагающую работу в области квантовой информации»: Дэвиду Дойчу, Чарльзу Беннету, Жилю Брассару и Питеру Шору.
2022-09-28 В «Библиотеке» выставлена классическая статья Л.Бибермана, Н.Сушкина и В.Фабриканта «Дифракция поочерёдно летящих электронов» («Доклады Академии Наук СССР», 1949, т. LXVI, №2, стр. 185 – 186) https://disk.yandex.ru/i/jM3buvPpiVurWA . В статье экспериментально доказано проявление единичным электроном свойств, описываемых волновым уравнением Шредингера. Это означает, что основополагающее уравнение квантовой механики и основанные на нём описания квантовых состояний (суперпозиция, интерференция) отражают физические характеристики наблюдаемых квантовых систем . Тем самым, эксперимент Бибермана-Сушкина-Фабриканта является экспериментальным фундаментом созданной впоследствии Х.Эвереттом многомировой интерпретации квантовой механики.
2022-09-28 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 28 сентября 2022 года представлена новая статья Овидиу Кристинел Стойка (Ovidiu Cristinel Stoica) из Национального института физики и ядерной инженерии в Бухаресте (Румыния): «Квантовая механика требует "конспирации"» («Quantum mechanics requires "conspiracy"»); (arXiv: 2209.13275). В бесконечно большой Вселенной или в Мультиверсе, записи результатов экспериментов и воспоминания наблюдателей отражают реальную историю Вселенной. Без этого наука и даже жизнь были бы невозможны. В то же время квантовые состояния, содержащие записи о несовместимых результатах квантовых измерений, в гильбертовом пространстве являются допустимыми. Но, так как они содержат ложные записи, то противоречат правилу Борна и нашим наблюдениям. Автор показывает, что исключение несовместимых результатов измерений требует точной настройки, которое кажется "конспирологическим" в том смысле, что оно зависит от будущих событий, в частности от будущего выбора параметров измерения; зависит от законов эволюции (обычно считается, что оно не зависит от начальных условий); нарушает статистическую независимость (даже в интерпретациях, которые удовлетворяют ему в контексте теоремы Белла, таких как теории волны-пилота, теории коллапса, многомировая и т.д.). Однако, подсистемы, способные записывать события, такие как измерительные устройства в состоянии “готовности”, являются ограниченным ресурсом. Но тогда мы должны всегда наблюдать, что правило Борна «изнашивается», и мир наводняется ненадежными записями, становящимися все более и более непоследовательными, как сон. Чтобы объяснить эту кажущуюся тонкую настройку, автор предполагает, что существует неизвестный закон или правило суперселекции.
2022-09-27 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 27 сентября 2022 года представлена работа Эда Сейдевица (Ed Seidewitz); seidewitz@mailaps.org (США): «Вероятность и измерение в релятивистской квантовой механике» («Probability and Measurement in Relativistic Quantum Mechanics»); (arXiv: 2209.12411). Вероятностная природа квантовой механики традиционно вводится через "коллапс" состояния системы при ее измерении. Среди других проблем копенгагенской интерпретации эта концепция особенно непривлекательна для релятивистской квантовой механики, поскольку такой "коллапс" нарушает относительность одновременности. В результате, со слов автора, в интерпретации релятивистской квантовой механики часто используют эвереттовский подход "многих миров" (ММИ), в котором коллапса не происходит. Но это приводит к трудностям в определении вероятности в различных возможных "мирах". Настоящая статья решает эту трудность, предоставляя релятивистскую модель измерения, в которой состояние Вселенной разлагается на некогерентные истории измерений, записанных в ней. Используется вневременной релятивистский формализм, поэтому не существует концепции динамической эволюции состояния, не говоря уже о его “коллапсе” в любой момент времени. Вместо этого статистика измерений рассматривается просто как следствие объективного распределения вероятностей по совокупности альтернативных собственных состояний Вселенной. Если что-то не измерено и не записано, то во Вселенной просто нет способа узнать, произошло ли это так или иначе. Согласно автору, его подход можно считать релятивистским обобщением интерпретации квантовой механики в виде согласованных историй. Поскольку используемый формализм относится к “вневременной” релятивистской Вселенной, модель не описывает “процесс” измерения во времени, а, скорее, рассматривает измерение как результат корреляций, обусловленных взаимодействиями между измеряемой системой, измерительным прибором и окружающей средой. В результате получается разложение состояния вселенной на ортогональные собственные состояния (т.е. ветви) соответствующие каждому из возможных результатов измерения.
2022-09-21 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 20 сентября 2022 года представлена еще одна статья Овидиу Кристинел Стойка (Ovidiu Cristinel Stoica) из Национального института физики и ядерной инженерии в Бухаресте (Румыния): «Правило Борна из подсчета состояний» («Born rule from counting states») (arXiv: 2209.08621). Данная статья — одна из ряда работ автора, затрагивающих вопросы многомировой интерпретации квантовой механики (ММИ). Автор дает «очень простой» вывод правила Борна путем подсчета состояний. Подсчет состояний приводит к правилу Борна только в том случае, если базис непрерывен, но все известные физически реалистичные наблюдаемые допускают такие базисы. Может показаться слишком трудоемким подсчитывать состояния всей Вселенной только для того, чтобы учесть вероятность измерения одной частицы. Но на самом деле мы всегда так делаем, потому что наблюдаемая частица может быть запутана с любой другой системой во Вселенной. Автор показывает, что плотность вероятности можно понимать как распределение “классических” состояний. Причем, подсчет микроветвлений, которые соответствуют базису, дает правильные вероятности (даже если они могут интерферировать в будущем, в отличие от макроветвлений). Каждая микроветвь состоит из классических полей, что оправдывает подсчет каждой микроветви как целого мира в рамках ММИ.
2022-09-20 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в в архиве электронных препринтов 20 сентября 2022 года представлена новая статья Овидиу Кристинел Стойка (Ovidiu Cristinel Stoica) из Национального института физики и ядерной инженерии в Бухаресте (Румыния): «Подсчет 3d-пространств: классичность и вероятность в стандартной и многомировой квантовой механике в свободной от фона квантовой гравитации» («Counting 3d-spaces: classicality and probability in standard and many-worlds quantum mechanics from quantum-gravitational background-freedom»); (arXiv: 2209.08623). Автор считает, что фоновая свобода в квантовой гравитации автоматически приводит к диссоциации квантового состояния на состояния, имеющие классическое 3d-пространство. Разделение на геометрию 3d-пространства допускает интерференцию в малых масштабах, но исключает ее в макромасштабах. Это дает возможность создавать макроскопические объекты классического вида, включая измерительные устройства. Подсчет геометрий 3d-пространства автоматически дает правило Борна. Диссоциация влечет за собой своего рода абсолютную декогеренцию, что делает ненужным коллапс волновой функции, что, естественно, приводит к новой версии многомировой интерпретации, одновременно решая ее основные проблемы:
2022-09-20
2022-09-17 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 15 августа 2022 года представлена статья Дин Цзя (Ding Jia) из Института теоретической физики Периметр и Университета Ватерлоо (Канада): «Способы переживания в наложенном мире» (“Modes of experience in a superposed world”); (arXiv: 2208.10920). Представлена структура для изучения различных способов переживания в наложенном («суперпозиционном») мире. Способы переживания характеризуются тем, как мир, переживания и их варианты связаны друг с другом восприятием, решениями и действиями от первого лица. В игрушечной модели сравниваются ожидаемая продолжительность жизни существ в различных возможных режимах опыта. Допускается, что универсальные законы физики не подразумевают правила Борна и некоторые существа (например, футуристический интеллектуальный квантовый компьютер с сознанием) могут иметь опыт, соответствующий другим правилам. Тогда каждый способ переживания может быть понят в контексте существования множества иных способов переживания. Даже несмотря на то, что обычный способ переживания «квантового» – без макроскопической суперпозиции – может быть неприменим ко всем существам, естественный отбор может предпочесть именно его. Могли существовать и другие живые формы с альтернативными способами переживания, которые эволюция исследовала в наложенном-суперпозиционном мире. В заключение отмечается, что все возможные физические конфигурации, характеризуемые некоторым интегралом пути, существуют в суперпозиции, а вероятности определяют объективные склонности к реализации определенных субъективных переживаний, когда наложенный-суперпозиционный мир предлагает альтернативы. Представленные идеи являются предварительными, и автор надеется, что результаты, представленные в его работе, показали интересные перспективы для дальнейшего изучения.
2022-09-13 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 13 сентября 2022 года представлена статья Пола Таппендена (Paul Tappenden) (paulpagetappenden@gmail.com): «Теория волны-пилота без нелокальности» («Pilot-Wave Theory without Nonlocality»); (arXiv: 2209.05159). Обычно считается установленным, что никакая локальная теория скрытых переменных невозможна. Но если принять наш мир за набор потоков, локальность может быть восстановлена. Согласно Дж. Баррету (Barrett; 1999), теория многих потоков (many-threads theory), в конечном счете, просто скрытая теория переменных, где одновременно рассматриваются все физически возможные миры. Современная теория волны-пилота аппроксимируеется множеством Теории взаимодействующих миров (MIW) и обеспечивает нерелятивистскую динамику элементарных частиц. Другими словами существует версия теории волны-пилота, которая сочетает в себе множество Миров и теорию волны-пилота новым способом. Эти идеи также могут привести к причинно-локальной теории Множества взаимодействующих миров, которая не нуждается в обосновании вероятности и которая может точно моделировать нерелятивистскую квантовую механику, поскольку в ней используется бесконечный набор взаимодействующих миров.
2022-09-08 На канале YouTube опубликована двадцать восьмая встреча из цикла "Беседы об эвереттике" https://www.youtube.com/watch?v=lrdL9m5DiLw .
2022-09-08 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 7 сентября 2022 года представлена статья Чжунхао Лу (Zhonghao Lu) из Питтсбургского университета (США): «Личностная идентичность и неопределенность в Мультиверсе Эверетта» («Personal Identity and Uncertainty in Everetts Multiverse»); (arXiv: 2209.02639). По мнению автора, детерминисткая природа Эвереттовского Квантового Мультиверса (ЭКМ), по-видимому, несовместима с обсуждением в ЭКВ вероятности. Для решения этой проблемы Сандерс и Уоллес (2008) пытались использовать подход Дэвида Льюиса к личностной идентичности (Дэвид Льюис, 1976, 1983). Утверждается, что подход Сондерса и Уоллеса несовместим с физикализмом, согласно которому, все ментальные существования по сути являются физическими существованиями. Например, существует по крайней мере два ментальных состояния, две мысли, соответствующие одному «физическому» (голосовому) высказыванию. Автор призывает уделять больше внимания вопросам личностной идентичности и возможным нефизикалистским интерпретациям ЭКМ.
2022-09-06 В Библиотеке размещена новая работа А.В.Каминского «Сознание, как источник физических законов». Предваряя рассуждения по существу, автор сообщает, что «цель настоящего физико-математического эссе показать, как на основе формализованного представления о сознании могут быть получены основные физические законы». Введя аксиому о сущности квантового наблюдателя - «Наблюдатель есть множество состояний сознания» - автор приходит к утверждению: «Физические наблюдаемые не являются состояниями объектов физической реальности, а являются состояниями сознания наблюдателя». На этой основе строится мультихрональная реинтерпретация теории Эверетта, в которой отсутствуют процессы ветвления волновой функции при альтернативных возможностях изменения состояния квантовых систем: «Мультихрональная реинтерпретация теории Эверетта заменяет весьма контр-интуитивную и противоречивую картину ветвления вселенной с ее «many minds» парадоксами, интуитивно понятной картиной последовательной реализации
2022-09-06 В библиотеке выставлен перевод П.Амнуэля статьи Л.Вайдмана «Почему многомировая интерпретация?». Статья является предисловием к будущему специальному выпуску Quantum Reports, посвященному результатам семинара «Многомировая интерпретация квантовой механики: современное состояние и связь с другими интерпретациями». Семинар состоится в Тель-Авиве 18–24 октября 2022 г. В этом предисловии Л.Вайдман последовательно и логично объясняет причины, по которым он считает ММИ «на сегодняшний день лучшей интерпретацией квантовой механики» и выражает надежду, что в результате работы семинара «мы придем к пониманию: причиной того, что MМИ не является консенсусом, является ошибка в развитии науки из-за длительного периода наблюдения квантовых явлений без удовлетворительного объяснения».
2022-09-02 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 30 августа 2022 года представлена вторая редакция статьи Питера К.Ф. Кухфиттига (Peter K.F. Kuhfittig) из Математического факультета Инженерной школы Милуоки (США): «Возможное существование машин времени в пятимерном пространстве-времени» («Possible existence of time machines in a five-dimensional spacetime»); (arXiv: 2104.03790v2). Хорошо известно, что проходимая червоточина (кротовая нора) в принципе может быть преобразована в машину времени. Червоточины — это ручки или туннели, соединяющие широко разделенные области нашей Вселенной или разные вселенные в целом. Их часто называют внутри-вселенскими или меж-вселенскими червоточинами соответственно. Однако невозможно совершить путешествие назад во времени за пределы эпохи машины времени, то есть до того, как машина времени была создана. В данной статье это ограничение обходится, поскольку червоточина использует замкнутые временные кривые (ЗВК) в пространстве анти-де Ситтера, которое характеризуется отрицательной космологической постоянной и существованием ЗВК. Такая червоточина может соединить настоящее с достаточно локализованной областью, которая не содержит ЗВК. «Возможно», найдены самосогласованные решения, позволяющие избежать в такой локализованной области нарушения причинно-следственной связи и избежать парадоксов путешествия во времени.
2022-08-30 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 30 августа 2022 года представлена статья Лижи Синь и Хувэнь Синь (Lizhi Xin, Houwen Xin) из Университета науки и техники Китая в Хэфэе (КНР): «Может ли наблюдатель узнать состояние кота Шредингера, не открывая коробку?» («Can the observer know the state of Schrodinger cat without opening the box?»); (arXiv: 2208.13225). Чтобы узнать, жив кот Шредингера или мертв, не открывая коробку, наблюдателям приходится играть в игру с природой. Связав атом из микроскопического мира с котом из макроскопического мира, Шредингер задал вопрос, на который трудно ответить с помощью копенгагенской интерпретации квантовой механики: где четкая граница между квантовым миром и классическим миром? Именно этот кот был предложен для многомировых квантовых интерпретаций (даны ссылки на работы Уилера, Зурека, Эверетта) и дебаты по этому поводу продолжаются до сих пор. Наблюдатели должны "угадывать" (с определенной степенью уверенности) состояние кота в условиях неполноты информации; для наблюдателей поверить, жив кот или мертв, на самом деле является проблемой принятия решений. Авторы выдвинули гипотезу о том, что неопределенное объективное естественное состояние может быть представлено суперпозицией всех возможных состояний и что неопределенное субъективное состояние принятия решения может быть представлено суперпозицией всех возможных действий. Наблюдатели принимают решения, принимая во внимание как объективность квантового мира, так и субъективность своих убеждений. Для решения проблемы авторы предлагают квантовую теорию принятия решений с ожидаемым значением и применяют квантовое дерево решений, а для оптимизации квантовых деревьев решений применяется квантово-генетическое программирование, которое обеспечивает для наблюдателей удовлетворительный набор стратегий принятия решений.
2022-08-27 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 26 августа 2022 года представлена статья Джея Лоуренса, Марцина Маркевича, Марека Жуковского (Jay Lawrence, Marcin Markiewicz, Marek Żukowski) из Дартмутского колледжа в Ганновере (США) и Гданьского университета (Польша): «Относительных фактов не существует. Реляционная квантовая механика несовместима с квантовой механикой» («Relative facts do not exist. Relational Quantum Mechanics is Incompatible with Quantum Mechanics»); (arXiv: 2208.11793). Авторы находят в реляционной квантовой механике (РКМ) противоречия, несовместимые со стандартной квантовой теорией и доказывают, что РКМ — это не интерпретация квантовой механики, а другая теория. Принципиальные отклонения от стандартной квантовой теории заключаются в том, что результаты измерений возникают в результате взаимодействий, которые запутывают систему S и наблюдателя A (унитарный процесс, называемый "предварительным измерением" в стандартной квантовой механике), и что такой результат является "фактом" относительно наблюдателя A, но это не факт относительно другого наблюдателя B, который не взаимодействовал с S или A во время предыдущего процесса измерения. То есть, В формирует другую, но одинаково достоверную, согласно РКМ версию событий по сравнению с версией А. Отдельное приложение статьи посвящено сценарию Дойча, предложенного в 1985 году (Deutsch, 1985), в котором обосновывалась принципиальная возможность проведения различия между Копенгагенской и многомировой интерпретациями (ММИ). В этом сценарии один наблюдатель (скажем, Вигнер) выполнял измерения в сложной системе, содержащей другого наблюдателя (скажем, Друга), и спин атома, который измерил Друг. По общему признанию, этот мысленный эксперимент выходит за рамки экспериментальных возможностей в настоящее время. Итак, Друг измеряет спин атома и сообщает Вигнеру, что он получил определенный результат, но не раскрывает, какой именно. Далее Вигнер проводит эксперимент, включающий повторное измерении спина атома. Полученное чистое состояние указывает на ММИ, тогда как смешанное состояние указывает на коллапс, подобный копенгагенскому. По мнению авторов, во-первых, измерение спина Другом описано весьма расплывчато. Есть ссылка на “органы чувств”, которые представляют собой некую неопределенную комбинацию детекторного аппарата атома и сознания Друга. Тем не менее, очевидно, что процесс измерения является чисто унитарным. Во-вторых, ожидание Вигнера существования состояния суперпозиции также основано на его (сиюминутном) предположении об унитарности процесса. Оба предположения согласуются с Многомировой структурой, принятой Дойчем. Однако эти предположения (об унитарности) переносятся в более поздних сценариях на трактовки, которые сохраняют перспективу единого мира, что является источником ряда несоответствий в более поздних работах, см., например, (Frauchiger and Renner, 2018) и (Brukner, 2018).
2022-08-25 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 24 августа 2022 года представлена статья Тони Гергетта и Андрея Шкерина (Tony Gherghetta, Andrey Shkerin) из Миннесотского университета (США): «Нейтринные осцилляции вне этого мира» («Out of this world neutrino oscillations»); (arXiv: 2208.10567 arXiv: 2208.10567). Нелинейные обобщения квантовой механики имеют разумную физическую интерпретацию, которая раскрывается с помощью эвереттовской (многомировой) формулировки квантовой механики (ММИ). Авторы изучают колебания вакуумных нейтрино. Рассматривается нелинейная интерференция между собственными состояниями массы нейтрино. Если в теории фундаментально присутствует нелинейный член, то различные состояния в суперпозиции становятся связанными друг с другом. Это может изменять интерференционную картину; в поздние моменты времени, когда система разветвляется и формируются квазиклассические истории, нелинейный член также может сохранять некоторую степень согласованности между этими историями. Другими словами, различные ветви системы (состоящие из нескольких частиц или, возможно, охватывающие всю вселенную) могут, в принципе, ощущать присутствие друг друга через нелинейный член. Применяемый в вычислении нейтринных колебаний метод является довольно общим и может быть использован для вычисления других возможных последствий, зависящих от состояния нелинейных взаимодействий в квантовой теории поля. Приведенный пример предоставляет способ вычисления эффектов нелинейной квантовой механики и теории поля, которые потенциально могут исследовать физическую реальность многих миров. Дальнейшее изучение фундаментальных нелинейных эффектов в физике элементарных частиц и космологии открывает путь к экспериментальному исследованию ММИ. Должен существовать мир, в котором это возможно, и, возможно, это наш собственный.
2022-08-23 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 18 августа 2022 года представлена статья Войцеха Губерта Зурека (Wojciech Hubert Zurek) из Лос-Аламосской национальной лаборатории (США): «Квантовая теория Классического: эйнселекция*, инвариантность, квантовый дарвинизм и Существование» («Quantum Theory of the Classical: Einselection, Invariance, Quantum Darwinism and Extant ones»); (arXiv:2208.09019). Со слов автора, его экзистенциальная интерпретация квантовой механики (вариант квантового дарвинизма) не является интерпретацией в полном смысле этого слова — она просто указывает на последствия квантового формализма и на некоторые дополнительные элементарные допущения. “Интерпретация соотнесенных состояний” Эверетта этим допущениям соответствует. Квантовые состояния можно рассматривать как чисто эпистемологические (как это делал Бор) или приписывать им “существование”. Технические результаты предполагают, что истина лежит где-то между этими двумя крайностями. Автор сомневается, что необходимо приписывать “реальность” всем ветвям универсального вектора состояния. Наблюдатели переопределяют “свою Вселенную” с помощью измерений. Наблюдения корректируют начальные условия, соотнесенные с будущим наблюдателя, у которого есть запись об их результатах. Остальная часть вектора состояния становится недоступной. В интерпретации соотнесенного состояния нет ничего, что подняло бы все ветви — особенно те, которые “не произошли” с наблюдателем — до уровня того же онтологического статуса, что и тот, который согласуется с восприятием наблюдателя. Объективное существование может быть приобретено (с помощью квантового дарвинизма) только относительно небольшой доли всех степеней свободы в квантовой Вселенной: остальное необходимо для “ведения записей”. Очевидно, что для этого в любое время доступно только ограниченное (хотя и большое) пространство памяти. Это ограничение на общую доступную память означает, что не все квантовые состояния, которые существуют или квантовые события, которые происходят сейчас, “действительно происходят” в смысле экзистенциальной интерпретации: лишь небольшая часть того, что происходит, будет по-прежнему доступна из записей в будущем. Конечный объем памяти Вселенной подразумевает неопределенность настоящего и непостоянство прошлого.
2022-08-22 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 31 мая 2022 года представлена статья Адамантия Зампели, Георгиоса Э. Павлуи, Петроса Валлдена (Adamantia Zampeli, Georgios E. Pavlou , and Petros Wallden) из Национального автономного университета Мексики (Мексика), Национального Афинского университета имени Каподистрии в Афинах (Греция), Эдинбургского университета (Великобритания): «Противоположные выводы для классических историй в рамках Согласованной формулировки историй Квантовой теории» («Contrary Inferences for Classical Histories within the Consistent Histories Formulation of Quantum Theory»); (arXiv:2205.15893). Большинство физических сценариев допускают несколько различных согласованных наборов историй по Р. Гриффитсу. Авторы используют согласованные истории для описания макроскопической (полуклассической) системы. Они отмечают, что не существует уникального способа разделения пространства историй. Истории, как квантовые объекты, интерферируют, и в целом невозможно присвоить классическую вероятность конкретной истории. Вместо этого можно определить «комплекснозначную билинейную функцию» в пространстве историй, называемую функционалом декогеренции. Функционал декогеренции, по существу, измеряет интерференцию между историями (то есть, дает количественную оценку склейки? - Ю.Н.). При применении к разделу пространства историй он измеряет интерференцию различных ответов в контексте, определяемом разделением / крупнозернистостью историй.
2022-08-16 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 16 августа 2022 года представлена статья Т. Ф. де Соуза, А. С. А. Рамоса, Р. Н. Косты Филью, Х. Фуртадо (T. F. de Souza, A. C. A. Ramos, R. N. Costa Filho, J. Furtado) из Федерального университета Сеара и Федерального университета Карири (Бразилия): «Обобщенная графеновая червоточина Эллиса-Бронникова» («Generalized Ellis-Bronnikov graphene wormhole»); (arXiv: 2208.06869). С топологической точки зрения можно представить себе червоточину (кротовую нору) как туннель, соединяющий две асимптотически плоские области одной и той же вселенной или двух разных вселенных. Одной из наиболее важных особенностей червоточин является идея проходимости, впервые изученная Моррисом и Торном. Однако, Моррис и Торн, заявили, что для построения проходимой червоточины требуется экзотическая материя. С тех пор поиск проходимых червоточин в альтернативных теориях гравитации без необходимости использования экзотической материи является важной темой исследований. Со слов авторов, первое проходимое решение для червоточины было найдено Эллисом и Бронниковым (1973). Недавно в качестве модели проходимой червоточины был предложен мостик, соединяющий слои двухслойного графена. А в данной работе авторы изучают варианты взаимодействия электрона с поверхностью «обобщенной червоточины Эллиса-Бронникова» в двухслойном графене. В контексте многомировой концепции «туннели», соединяющие две асимптотически плоские области двух разных вселенных являются склейками.
2022-08-11 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 10 августа 2022 года представлена статья Льва Вайдмана (Lev Vaidman) из Тель-Авивского университета (Израиль): «Почему многомировая интерпретация?» («Why the Many-Worlds Interpretation?»); (Статья написана для семинара по многомировой интерпретации квантовой механики в Тель-Авиве в октябре 2022 г.; arXiv:2208.04618; Quantum Rep. 2022, 4 (3), 264-271). Представлено краткое (субъективное) описание современного состояния многомировой интерпретации квантовой механики (ММИ). Утверждается, что MМИ - единственная интерпретация, которая исключает действие на расстоянии и случайность из квантовой теории. Определены ограничения MМИ в отношении вопросов вероятности, которые могут быть законно заданы. Онтологическая картина ММИ как теории универсальной волновой функции, разложенной на суперпозицию мировых волновых функций, важные части которых определены в трехмерном пространстве, представлена с точки зрения нашей конкретной ветви. Упоминаются некоторые предположения о заблуждениях, которые, по-видимому, мешают MМИ быть в общепринятой. Отмечено, что картина Гейзенберга в контексте ММИ дает описание не только настоящего, но и прошлого, поэтому она нелокальна не только в пространстве, но и во времени. В окончании статьи изложены основные моменты подхода к MМИ Льва Вайдмана:
2022-08-08 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 05 августа 2022 года представлена статья Эмили Адлам (Emily Adlam) из Института философии Ротмана в Лондоне (Великобритания): «Существует ли Причинно-следственная связь в Фундаментальной физике? Новые идеи из Матриц процессов и Квантового причинно-следственного моделирования» («Is There Causation in Fundamental Physics? New Insights from Process Matrices and Quantum Causal Modelling»); (arXiv: 2208.02721). Автор рассматривает значение формализма матрицы процессов и программы квантового причинно-следственного моделирования. Анализируется процесс, состоящий из набора агентов в отдельных лабораториях, которые могут свободно выполнять любые локальные операции, разрешенные квантовой механикой. Отмечается, что, возможно, наиболее хорошо разработанным из существующих подходов к пониманию квантовых вероятностей в условиях отсутствия коллапса является анализ теории принятия решений Дойча-Уоллеса, разработанный в контексте интерпретации Эверетта. Этот подход может быть неприменимым в контексте экспериментов, исследующих неопределенный причинно-следственный порядок, потому что он предназначен для применения в режиме, в котором различные ветви волновой функции эффективно декогерированы и, следовательно, интерференция между ветвями невозможна, а это не относится к экспериментам с неопределенным причинно-следственным порядком, подобным эксперименту с квантовым переключателем. (Эксперимент с квантовым переключателем - «SWITCH» (K. Goswami et al. 2018) - практическая реализация неопределенного причинно-следственного порядка; «в некотором смысле» является суперпозицией различных причинных порядков). Смысл этого эксперимента заключается в том, что ветви в конечном счете рекомбинируются (по мнению автора, в противном случае мы не смогли бы проверить, что суперпозиция причинной структуры имела место). Одной из важных аксиом в анализе теории принятия решений является "безразличие к ветвлению" (D. Wallace, 2012): агент не заботится о ветвлении как таковом: если определенное измерение оставляет его будущие "я" в N разных макро-состояниях, но не меняет ни одного из их вознаграждений, ему безразлично, выполняется ли измерение или нет. Эта аксиома кажется очень разумной если ветви не могут интерферировать, но не в случае, когда ветвление влечет за собой возможность таких явлений, как интерференция и рекомбинация, которые могут привести к изменению или стиранию воспоминаний агентов, и это, безусловно, похоже на то, что их может волновать! (Автор описывает эвереттические склейки).
2022-08-05 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 3 августа 2022 года представлена статья Дугласа Стэнфорда и Чжэньбинь Янга (Douglas Stanford, Zhenbin Yang) из Стэнфордского университета (США): «Червоточины в пространстве-времени могут привести к сюрпризам в физике черных дыр» («Spacetime wormholes can lead to surprises in black hole physics»); (arXiv: 2208.01625). Авторы исследуют сценарий «серой дыры», когда «очень старые» черные дыры могут туннелировать в белые дыры, испуская дочернюю детскую вселенную. (В таком сценарии черные дыры начинают свою эволюцию с состояния с низкой сложностью и развиваются в течение очень долгого времени, до тех пор, пока их сложность достигнет своего максимума, после чего появляется компонент поведения белых дыр; между поведением черной и белой дыры система проводит время в состоянии «серой дыры» по Сасскинду (2015), когда нет стрелы времени). В системах с конечной энтропией набор состояний, которые можно получить, эволюционируя далеко в будущее, совпадает с набором, который можно получить, эволюционируя далеко в прошлое, и они не должны иметь разных свойств для наблюдателя. В рамках обсуждаемого сценария, в частности, предполагается, что «прыгать в черные дыры безопасно», потому что они расширяются, а возмущения ослабевают. Но опасно прыгать в сжимающиеся белые дыры с возмущениями и синим смещением.
2022-08-05 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 04 августа 2022 года представлена статья Одеда Шо, Феликса Беннингера, Андрея Хренникова (Oded Sho, Felix Benninger, Andrei Khrennikov) из Медицинского центра Рабина, Медицинского исследовательского центра Фельзенштейна, Тель-Авивского университета (Израиль), Университета Линнея в Векше (Швеция): «Возникающая квантовая механика вселенной событий, квантование событий с помощью теории дендрографических голограмм» («Emergent quantum mechanics of the event-universe, quantization of events via Dendrographic Hologram Theory»);(arXiv: 2208.01931). Статья — продолжение работы тех же авторов (Shor O.; Benninger F.; Khrennikov A.): «К объединению Общей теории относительности и квантовой теории: Дендрограммное представление Событийной Вселенной». (« Towards Unification of General Relativity and Quantum Theory: Dendrogram Representation of the Event-Universe». Entropy 2022, 24, 181). В предлагаемой концепции квантовая механика (QM) основана на вселенной, состоящей исключительно из событий, например результатов наблюдений объектов. Все события связаны через древовидную структуру. Такая целостная картина событийных процессов формализована в рамках Теории дендрографических голограмм (DHT). В динамической модели DHT появление нового события вызывает рекомбинацию всех событий на дереве и взаимосвязей между ними (эффект нелокальности). Модель DHT не является классической или квантовой в смысле обычной физики; предполагается возникновение QM из DHT. Рассматривается иерархическая, а не причинно-следственная структура. В теории DH все события всегда присутствуют. “Всегда присутствующие события” «больше соответствуют Барбуру» и не обязательно должны появляться в результате динамического процесса. В отличие от Барбура, авторам не требуются вероятности в пространственной фазе для создания видимой динамики. ( Дж. Барбур – автор концепции о мироздании как «пинакотеке состояний» — хаотическом собрании вечных и неизменных «кадров», на которых запечатлены все возможные в данной ветви мультиверса состояния всех его элементов).
2022-07-30 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что на сайте Скотта Ааронсона 27 июля 2022 года размешен текст под названием: «О черных дырах, голографии, квантовом расширенном тезисе Черча-Тьюринга, полностью гомоморфном шифровании и загрузке мозга» («On black holes, holography, the Quantum Extended Church-Turing Thesis, fully homomorphic encryption, and brain uploading»); (https://scottaaronson.blog).
2022-07-29 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 29 июля 2022 года представлена статья Карлоса Сабина (Carlos Sabín) из Автономного университета Мадрида (Испания): «Аналоговые непричинные нулевые кривые и защита хронологии в массиве dc-SQUID» (“Analogue non-causal Null Curves and Chronology protection in a dc-SQUID Array”); (arXiv: 2207.14164). Автор рассуждает на тему: "путешествие во времени кажется невозможным, но носит ли эта невозможность технологический или фундаментальный характер?”. В принципе, существование Замкнутых Временных Кривых (CTC) допускается Общей теорией относительности, но Хокингом была предложена Гипотеза защиты Хронологии (1992), согласно которой квантовые эффекты могут предотвращать образование CTC, тем самым предотвращая нарушения причинности. Однако экспериментальные проверки такой теории недоступны даже в среднесрочной / долгосрочной перспективе. В этом контексте становится интересным использование квантовых симуляторов, с помощью которых в принципе можно было бы изучать взаимодействие квантовых эффектов (таких как квантовая запутанность) с гравитационными системами. Возможно квантовое моделированию искривленных пространств–времен - проходимых кротовых нор-червоточин и других экзотических пространств-времен, содержащих CTC. Автор предлагает моделирование с помощью инструментов, включающих матрицу dc-SQUID (сверхпроводящее устройство квантовой интерференции). Он считает, что таким образом может быть смоделировано пространство-время, содержащее непричинные кривые, которые уходят в прошлое, но невозможно построение пространств-времен с хронологическими горизонтами, в которых можно было бы путешествовать из непричинных областей в причинные (то есть в модели обнаружен механизм защиты хронологии). В конце статьи автор вспоминает знаменитое высказывание Хокинга (1992): “Похоже, существует агентство по защите хронологии, которое предотвращает появление замкнутых временных кривых и таким образом делает Вселенную безопасной для историков”.
2022-07-28 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 27 июля 2022 года представлена четвертая редакция статьи Амира Р. Араба (Amir R. Arab) из Математического института им. Стеклова РАН в Москве и Московского физико-технического института в Долгопрудном (Россия): «О состояниях квантовой теории» («On states of quantum theory»); (arXiv: 2110. 00793v4). В данной работе изучаются обобщенные квантовые состояния методами математической физики, развивается концепция З. Чена (2015), опирающаяся на фундаментальные работы Поля Дирака (1958) и Герарда ‘т Хоофта (2014). Один из разделов статьи: «Формулировка квантовой механики в терминах миров». Авторы, в частности, обращаются к формулировке квантовой механики в терминах миров и обсуждают процесс измерения в формализме квантовой механики в условиях миров. Математически описывается эволюция миров. Изучаются сингулярные состояния, которые обычно не фигурируют в общепринятом формализме квантовой механики, но реализация таких состояний, по их мнению, подтверждает необходимость предложенного концептуального подхода к мирам квантовой системы. Из конструкции авторов следует, в частности, что в процессе измерения мы имеем только изменение информации и в отличие от ортодоксальной квантовой механики никакого коллапса волновых пакетов не происходит.
2022-07-20 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 19 июля 2022 года представлена статья Дэвида Р. М. Арвидссон-Шукура, Эйдана Г. Макконнелла, Николь Юнгер Халперн (David R. M. Arvidsson-Shukur, Aidan G. McConnell, Nicole Yunger Halpern) из Кембриджского университета (Великобритания), Объединенного центра квантовой информации и компьютерных наук, NIST и Мэрилендского университета (США): «Квантовое моделирование путешествий во времени может привести к неклассической метрологии» («Quantum simulations of time travel can power nonclassical metrology»);(arXiv: 2207.07666 ). Авторы использовали теорию пост-селективных замкнутых времениподобных кривых (ПЗВК) и показали, что моделирование с помощью пост-селективных схем квантовой телепортации может эффективно отправлять полезные состояния из будущего в прошлое, открывая доступ к неклассическим феноменам в квантовой метрологии. В модели идеальное входное состояние становится известным только после того, как произошло взаимодействие и измерение. Представленный мысленный эксперимент таким образом извлекает метрологическое преимущество (например, потенциально, увеличение вычислительной мощности компьютера) из явно ретрокаузальных корреляций, создаваемых с помощью квантовых цепей и запутанных состояний. Полученные концептуальные результаты указывают на глубокую связь между квантовой запутанностью и ретрокаузальной корреляцией, обеспечивающей неклассические преимущества. Хотя ПЗВК не позволяют вернуться назад и изменить свое прошлое, но позволяют «создать лучшее завтра, решая вчерашние проблемы сегодня».
2022-07-17 Памяти Дж.А.Уилера. 9 июля 2022 года исполнилось 111 лет со дня рождения Джона Арчибальда Уилера (9 июля 1911 года – 13 апреля 2008 года; напомним, что среди его учеников - Ричард Фейнман, Хью Эверетт III, Кип Торн, Макс Тегмарк …). Наряду с рядом прорывных идей в физике с именем Уилера связано развитие идеи о том, что наблюдатели создают реальность.
2022-07-16 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 8 апреля 2022 года представлена статья Энн-Кэтрин Бернса, Дэвида Э. Каплана, Тома Мелиа, Сурджита Раджендрана (Anne-Katherine Burns, David E. Kaplan, Tom Melia, Surjeet Rajendran) из Калифорнийского университета в Ирвайне, Университета Джона Хопкинса в Балтиморе (США), Токийского университета (Япония): «Эволюция времени в квантовой космологии» («Time Evolution in Quantum Cosmology»); (arXiv: 2204.03043). По утверждению авторов, основная цель данной работы - продемонстрировать, что нелинейные гравитационные явления могут быть последовательно описаны с помощью квантовой механики. В рамках нелинейной квантовой механики, которая допускает, что “миры” многомировой интерпретации могут влиять друг на друга, авторы предлагают описание эволюции времени в нелинейных гравитационных системах, таких как космологическое пространство-время начального состояния Вселенной, возникшей в результате взрыва сингулярности Большого взрыва. Наиболее феноменологически интересны приложения предложенного авторами формализма для описания макроскопических квантово-механических явлений, которые могут существовать, несмотря на декогеренцию (например, в ситуации, когда Вселенная находится в макроскопической суперпозиции, как и ожидается в обычной инфляционной космологии).
2022-07-14 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что 6 июля 2022 г. на ютуб-канале «Редакция. Наука» стала доступной беседа преподавателя высшей математики и инженера Александра Калюжнюка с научным сотрудником Российского квантового центра Дмитрием Чермошенцевым на тему: «Откуда у нас ЛОЖНЫЕ воспоминания? Мультивселенные, симуляция и квантовый ластик» (https://www.youtube.com/watch?v=hy_ZSnQUJmE).
2022-07-07 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в журнале «Математические структуры и моделирование» 2022. N2 (62), (стр. 167–17) опубликована новая статья А.К. Гуца из Омского государственного университета им. Ф.М. Достоевского (Омск, Россия): «МАШИНА ВРЕМЕНИ И ПАРАДОКС ДЕДУШКИ».
2022-07-05 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что на ютубе 04.07.2022 года выложена беседа: «МНОГОМИРОВАЯ ТРАКТОВКА КВАНТОВОЙ МЕХАНИКИ. РОДЖЕР ЖЕЛЯЗНЫ. Переслегин, С.Шилов».
2022-07-05 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 04 июля 2022 года представлена статья Бенджамина Шумахера и Майкла Д. Уэстморленда (Benjamin Schumacher, Michael D. Westmoreland) из Колледжа Кеньон и Университета Денисона в Огайо (США): «Интерпретация квантовой теории: квантовая проблема "grue-bleen"» («Interpretation of quantum theory: the quantum "grue-bleen" problem»; (arXiv:2207.00502). Авторы представили критику многомировой интерпретации квантовой механики Эверетта (ММИ), основанную на некоторых положениях философии Нельсона Гудмена… Они считают, что мы должны обратиться к дополнительному “фрейму” (“фрейм” в самом общем случае обозначает структуру, содержащую некоторую информацию) за пределами эвереттовского формализма для того, чтобы осмысленно применять квантовую теорию. Если мы рассматриваем квантовую теорию как прагматичный набор правил, которые наблюдатель применяет для анализа ограниченной внешней системы, то … наблюдатель вполне может настаивать на некой дополнительной структуре, прежде чем применять теорию. С этой точки зрения мы всегда интерпретируем квантовую механику, апеллируя, неявно или явно, к секторам Вселенной, которые не рассматриваются как части квантовой системы. Но программа ММИ требует, чтобы мы рассматривали квантовую теорию как описание целой вселенной, включающей наблюдателя (не зря Эверетт озаглавил свою работу “Теория универсальной волновой функции”). Авторы считают, что физическая основа любой интерпретации должна лежать вне системы - не обязательно как отдельная “классическая” область, но как область, которая каким-то образом исключается из преобразований подобия, подразумеваемых в математическом формализме теории. В данной статье авторы не предлагали и не одобряли какую-либо конкретную интерпретацию квантовой механики. … Они утверждают, что невозможно построить жизнеспособную интерпретацию системы, основанную только на состояниях и динамической эволюции самой системы.
2022-07-04 На канале YouTube Павла Амнуэля 04.07.22 опубликована двадцать пятая передача цикла «Беседы об эвереттике» - «Психика и многомирие». https://www.youtube.com/watch?v=PRmv-WnQpo0
2022-06-27 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 25 апреля 2019 года была представлена четвертая редакция статьи Брайана Д. Джозефсона (Brian D. Josephson) из Кавендишской лаборатории в Кембридже (Великобритания): «Физика разума и мышления» («The Physics of Mind and Thought»); (arXiv: 1906.05095v4). По мнению автора «обычная физика» неудовлетворительна в том смысле, что она не принимает во внимание явления, связанные с разумом и смыслом. Основная проблема квантовой механики заключается в том, что решение человека относительно того, какой аспект природы наблюдать, может иметь реальные последствия, и неясно, как такая умственная деятельность может быть интегрирована с традиционной физикой; мы не можем просто оставить наблюдателя в стороне. Автор считает, что семиотика (теория знаков) будет играть центральную роль в такой будущей интегрированной физике, основной задачей которой является преодоление разрыва между знаками и явлениями, рассматриваемыми современной физикой, тем самым достигая интегрированной точки зрения. В данном случае основной концепцией является концепция семиотической триады (знак-означающее, означаемое, смысл), где одна сущность влияет на отношения между двумя другими. При подходящих обстоятельствах такие отношения возникают спонтанно. Язык может эволюционировать таким образом, чтобы иметь возможность символизировать абстракции, включая математику, что потенциально может привести, в соответствии с "fabrication of form" Уилера
2022-06-23 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 21 июня 2022 года представлена статья Писина Чена, Мисао Сасаки, Дона Хана Йома, Юнги Юна (Pisin Chen, Misao Sasaki, Dong-han Yeom, Junggi Yoon) из Тайваньского национального университета, Института астрофизики элементарных частиц и космологии им. Кавли, (Тайвань), Стэнфордского университета (США), Токийского университета Киотского университета (Япония), Национальный университета в Пусане, Азиатско-тихоокеанского центра теоретической физики (Республика Корея): «Туннелирование между несколькими историями как решение парадокса потери информации» («Tunneling between multiple histories as a solution to the information loss paradox»); (arXiv: 2206.10251). Парадокс потери информации, связанный с испарением черной дыры Хокинга, является нерешенной проблемой в современной теоретической физике. Авторы рассматривают эволюцию энтропии запутывания черной дыры с помощью интеграла по евклидову пути (EPI) квантового состояния и допускают ветвление полуклассических историй вдоль эволюции Лоренца. Они предположили, что существуют по крайней мере две истории, которые вносят вклад в EPI, где одна - история потери информации, а другая - сохранение информации. В ранние периоды первый доминирует над EPI, в то время как в поздние периоды последний становится доминирующим. Таким образом, восстанавливается унитарность. Авторы комментируют сходство и различие между своим подходом и подходом к репликам червоточин и гипотез об островах.
2022-06-22 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что В архиве электронных препринтов 21 июня 2022 года представлена статья Кости Шардонне, Марка де Висма, Бенуа Валирона, Рено Вильмара (Kostia Chardonnet, Marc de Visme, Benoît Valiron, Renaud Vilmart) из университета Париж-Сакле, Парижского университета Сите (Франция): «Исчисление многих миров: представление квантового управления» («The Many-Worlds Calculus: Representing Quantum Control»); (arXiv:2206.10234). Представлен новый звуковой и полный графический язык, а также теория уравнений и система миров, которые помогают построить денотационную семантику нового языка. Авторы доказывают, что новый язык позволяет обобщать существующие квантовые графические языки, с добавлением более богатых типов, чем просто обычные кубиты и тензоры кубитов. Как и в каком контексте можно использовать предложенное исчисление, авторы обещают рассмотреть в будущей работы.
2022-06-20 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 17 июня 2022 года представлена статья Игоря Юрьевича Потемина (Igor Yu. Potemine) из университета Поля Сабатье, в Тулузе (Франция): «Гипервселенная, 5-мерная гравитация и мультивселенные как вложенные оболочки Гогберашвили» («Hyperverse, 5-dimensional gravity and multiverses as nested Gogberashvili shells») (arXiv: 2206.08689). Автор рассматривает Гипервселенную как совокупность мультивселенных в 5-мерном пространстве-времени с гравитационной постоянной G. Каждая мультивселенная в представленной упрощенной модели представляет собой букет вложенных сферических оболочек Гогберашвили (каждая Вселенная рассматривается как тонкая оболочка, расширяющаяся в 5-мерном гиперпространстве). Предполагается, что физическая вселенная — это одна из тех оболочек внутри Локальной Мультивселенной. Это дает интригующую идею рассматривать сверхмассивные астрономические черные дыры как расширяющиеся (2 + 1)-мерные мультивселенные (с возможными и более высокими слоями).
2022-06-20 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 20 июня 2022 года представлена статья С. Даниала Форгани, С. Хабиба Мажаримоусави (S. Danial Forghani, S. Habib Mazharimousavi) из Международного университета Final и Восточно-Средиземноморского университета Северного Кипра: «Замкнутая Вселенная: Космические врата де Ситтера» («A Closed Universe: de Sitter Cosmic Gate») (arXiv: 2206.08816). Вводится новый космологический объект по аналогии с понятием червоточины (кротовой норы) в общей теории относительности. Подобно тому, как червоточины соединяют две удаленные точки через туннель в пространстве-времени, этот новый объект соединяет два пространства-времени через большое отверстие, которое называют "Космическими вратами". В этом контексте две идентичные копии регулярной части пространства-времени де Ситтера разрезаются через временную гиперплоскость. Затем они склеиваются на своих идентичных границах, образуя полное пространство-время. В отличие от концепции червоточины, которая соединяет две разные удаленные точки одной и той же или разных вселенных через гиперплоскость/горловину, площадь поверхности которой является локальным минимумом, вводятся космические врата, которые соединяют две закрытые вселенные через гиперплоскость/врата, площадь поверхности которых является локальным максимумом.
2022-06-18 В журнале «Phys. Rev. E» 29 апреля 2022 года опубликована статья С. В. Григорьева, О. Д. Шныркова, П. М. Пустовойт, Е. Г. Яшиной и К. А. Пшеничного «Экспериментальное доказательство логарифмической фрактальной структуры ботанических деревьев» (S. V. Grigoriev, O. D. Shnyrkov, P. M. Pustovoit, E. G. Iashina, and K. A. Pshenichnyi, «Experimental evidence for logarithmic fractal structure of botanical trees», Phys. Rev. E 105, 044412 – Published 29 April 2022). Статья представлена в интервью С.Григорьева корреспонденту отдела науки издания «Газета.ру» Борису Ганьжину (18 июня 2022, https://www.gazeta.ru/science/news/2022/06/18/17952620.shtml?updated ):
2022-06-15 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что 19.11.2021 года подписана в печать и в 2022 году опубликована новая книга Вадима Руднева (МГУ. Россия): «Психика и реальность: Исследования по философии психиатрии». М.: Издательская группа "Альма Матер".
2022-06-14 На канале YouTube Павла Амнуэля 13.06.22 опубликована двадцать четвёртая передача цикла «Беседы об эвереттике» - «Есть ли сознание у электрона?».
2022-06-09 Ведущий научный сотруднннииик МЦЭИ Ю.В.Никонов сообщает, что 25 января 2022 года опубликована книга Дэвида Дж. Чалмерса (David J. Chalmers); (США): «Реальность +: виртуальные миры и проблемы философии» («Reality+: Virtual Worlds and the Problems of Philosophy. Publisher: W. W. Norton & Company. 544 pages»).
2022-06-05 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 13 апреля 2022 года представлена статья Алиреза Пархизкара и Виктора Галицкого (Alireza Parhizkar, Victor Galitski) из Мэрилендского университета (США): «Муаровая гравитация и космология» («Moiré Gravity and Cosmology»); (arXiv: 2204.06574). Фундаментальная загадка космологии - наблюдаемые масштабы космологической постоянной на много порядков меньше масштабов, ожидаемых в теории. В данной работе предлагается новая конструкция "би-мира" ([3 + 1]-мерного многообразия с двумя различными геометриями), которая может быть полезной для решения проблемы космологической постоянной. Вводится понятие "муарового поля"; когда два слоя сеток объединяются, например, в случае перекрывающихся тканей, или когда цифровая фотография пиксельного экрана просматривается через другой такой экран; появляется дополнительный более крупный – муаровый узор. Когда исходные слои расположены достаточно близко, муаровый узор становится чем-то большим, чем просто оптической иллюзией. Муаровая физика как концептуальный инструмент потенциально может быть использована во многих различных контекстах. Например, в двухслойном графене муаровый узор может определять процесс туннелирования электронов. В статье исследуется возможное присутствие «муара» в гравитационных системах и его значение для космологии. По определению, для появления муарового узора, необходимы две более или менее похожие системы в качестве базовых структур - «би-мир», он же – «двумирье». В рамках рассмотрения гравитации объединяются два искривленных пространства-времени. Конструкция «би-мира» в целом описывает вселенную, содержащая два мира, а не только две метрики, она включает в себя поля материи, влияние которых имеет решающее значение и измеримо, по крайней мере, с помощью космологических наблюдений, в частности при наблюдениях физики ранней вселенной.
2022-06-03 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 31 мая 2022 года представлена статья Адамантия Зампели, Георгиоса Э. Павлу, Петроса Уолдена (Adamantia Zampeli, Georgios E. Pavlou, Petros Wallden) из Национального автономного университета Мексики (Мексика), Афинского университета имени Каподистрии (Греция), Эдинбургского университета (Великобритания): «Противоположные выводы для классических историй в рамках Согласованной формулировки историй Квантовой теории» («Contrary Inferences for Classical Histories within the Consistent Histories Formulation of Quantum Theory»); (arXiv: 2205.15893). По мнению авторов, первоначальной мотивацией формализма согласованных историй (по Роберту Гриффитсу) является описание замкнутых квантовых систем без измерений или внешних наблюдателей. Это достигается путем замены процесса измерения условием согласованности, которое должно быть выполнено для получения классического ответа на вопрос. Авторы используют согласованные истории для описания макроскопических полуклассических систем, чтобы показать, что парадоксы, связанные с контекстуальностью (смешиванием различных согласованных множеств), сохраняются в полуклассическом пределе, что существенно отличается от контекстуальности стандартной квантовой теории. Как продемонстрировано в статье, на один и тот же вопрос можно ответить, рассмотрев различные разделы пространства историй. Математически различные разделы выглядят так, как если бы имели место разные измерения, но в согласованных историях не происходит “реального” измерения или участия внешнего наблюдателя. Авторы считают, что их результаты указывают на необходимость неких ограничений, дополнительных к условию согласованности и приходят к выводу, что "все непротиворечивые множества равны", но "некоторые равнее”».
2022-05-27 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает,что в архиве электронных препринтов 24 мая 2022 года представлена статья Арджуны Берера, Хайме Кальдерона-Фигероа (Arjun Berera, Jaime Calderón-Figueroa) из Эдинбургского университета (Соединенное Королевство): «Жизнеспособность квантовой связи на межзвездных расстояниях» («Viability of quantum communication across interstellar distances»), (arXiv: 2205.11816). В контексте проблемы связи с внеземным разумом (проблемы CETI) рассматривается возможность достижения квантовой связи с использованием фотонов на межзвездных расстояниях. Как основной кандидат для создания квантового канала связи определена рентгеновская область спектра, хотя оптический и микроволновый диапазоны также могут обеспечить связь на больших расстояниях. Обсуждаются некоторые из способов, которыми можно идентифицировать квантовый сигнал, поступающий из космоса, особенно от разумной цивилизации, и преимущества создания такого канала связи по сравнению с классической коммуникацией. В качестве простого, наглядного примера, для внеземного квантового сигнала предложена квантовая телепортация. Естественно, существуют и другие протоколы квантовой связи, все из которых используют свойства квантовой запутанности. Развитая цивилизация, пытающаяся достичь первого контакта с другой цивилизацией должна бы послать сигнал, который был бы легко идентифицируемым, даже общепринятым. В вопросе квантовой запутанности состояния Белла достигли такого статуса, что их можно идентифицировать повсеместно. Таким образом, предлагается жизнеспособный вариант телепортации информации в неизвестную цивилизацию. Причем квантовый телепортированный сигнал может также обеспечивать значительную передачу информации, и это может быть главным аргументом в пользу этого режима связи.
2022-05-27 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 27 мая 2022 года представлена статья Т. Залиалютдинова, Д. Соловьева, Д. Чубукова, С. Чеховской, Л. Лабзовского (T. Zalialiutdinov, D. Solovyev, D. Chubukov, S. Chekhovskoi, L. Labzowsky) из Санкт-Петербургского государственного университета, Петербургского института ядерной физики им. Б.П. Константинова, Национального Исследовательского центра ”Курчатовский институт”, Санкт-Петербургского государственного электротехнического университета (Санкт-Петербург, Россия): «Альтернативная интерпретация релятивистского обращения времени и стрелы времени» («Alternative interpretation of relativistic time-reversal and the time arrow»), (arXiv: 2205.13417). Предлагается альтернативная интерпретация обращения времени, которая позволяет ввести оператор "стрелы времени" и охарактеризовать каждую частицу новым квантовым числом - значением "стрелы времени". Частицы со значениями "стрелы времени", противоположными значению "стрелы времени" в нашей вселенной, образуют другую вселенную (антивселенную), похожую на нашу. Частицы в "антивселенной" отличаются от частиц в нашей вселенной только направлением стрелы времени. В общем, будущее в антивселенной (согласно ее стреле времени) соответствует прошлому, согласно стреле времени нашей вселенной, и наоборот: наше будущее - это прошлое по отношению к стреле времени антивселенной. Два гравитирующих тела из двух разных вселенных всегда разделены временным интервалом, но могут находиться в одной и той же точке пространства, т.е. могут взаимодействовать друг с другом. Наиболее важным следствием предлагаемой концепции обращения времени и существования антивселенной является возможность рассматривать антивселенную как источник темной материи. Важно также, что в ”принципе” есть возможность подтвердить существование антивселенной в лабораторных экспериментах. Если частицы подвергаются воздействию, которое меняет направление времени вспять, то в процессе спонтанного распада (ионизации) основного состояния атома, электрон внутри атома может переходить из нашей вселенной в антивселенную. То есть он должен исчезнуть для наблюдателя в нашей вселенной, поскольку в результате перехода он станет частицей в антивселенной и больше не будет взаимодействовать с частицами в нашей вселенной. Для тяжелых атомов процесс перехода электронов в антивселенную должен сопровождаться рентгеновским излучением. В принципе, тот же эффект (исчезновение электрона из-за перехода в другую вселенную, т.е. обмен зарядами между двумя вселенными) может произойти со свободным электроном во внешнем электрическом поле, однако эксперименты со свободными электронами в электрических полях более сложны.
2022-05-23 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 23 мая 2022 года представлена последняя редакция (для печати) статьи Дона Вайнгартена (Don Weingarten), (donweingarten@hotmail.com. США): «Макроскопическая реальность из квантовой сложности» («Macroscopic Reality from Quantum Complexity»), (arXiv:2105.04545v5; Found. Phys., 52:45. 2022). Автор считает, что в то время как ветвление (в рамках ММИ) в экспериментах - это физический процесс, который происходит с присутствием или без присутствия человека-наблюдателя, в соответствии с представленной концепцией, регистрация событий человеком привязана к одной ветви. Образование ветвей в этом контексте - это всего лишь дополнительный слой мира, «лежащий» на слое неизмененной унитарной гамильтоновой временной эволюции. Связанная с этим возможность состоит в том, что различные психические состояния могут быть связаны с различными ветвями "потому что сложность, возникающая из суперпозиции различных психических состояний, сама по себе достаточна для вызывания ветвлений». Мир, видимый человеческими наблюдателями, включает в себя элементы реальности, которые не могут быть идентифицированы просто векторами состояния. То есть, временная эволюция набора ветвей дает древовидную структуру, каждая ветвь которой в конечном итоге разделяется на пару субветвей. Предлагаемый вектор состояния реального мира следует через дерево по единственной последовательности ветвей и суб-ветвей, причем субветвь в каждом событии разделения выбирается случайным образом в соответствии с правилом Борна. Автор отмечает, что ветви, связанные с достаточно изолированной связанной подсистемой, потенциально могут рекомбинировать. Однако, как следствие изоляции от остальной Вселенной, такие процессы рекомбинации обязательно привели бы к отсутствию внешних записей. В релятивистской формулировке технически удобно рассматривать ветви, которые рекомбинируют в развивающейся оптимальной конфигурации ветвей. Но опять же, поскольку события рекомбинации происходят только в подсистемах, достаточно изолированных от остальной Вселенной, вполне вероятно, что их обработка в релятивистском ветвлении не имеет заметных последствий.
2022-05-22 Ведущий научный сотрудник МЦЭИ Ю.В. Никонов сообщает, что в архиве электронных препринтов 19 мая 2022 года представлена статья Эдуардо И. Гендельмана, Зеи Мерали (Eduardo I. Guendelman, Zeeya Merali) из Университета Бен-Гуриона в Негеве (Израиль), Франкфуртского института перспективных исследований (Германия), Багамского института перспективных исследований и конференций (Багамские Острова), Института фундаментальных вопросов в Декейтере (США): «Снятие натяжения струн путем создания дочерних вселенных в динамической модели мира-браны с натяжением струн» («Relieving String Tension By Making Baby Universes in a Dynamical String Tension Braneworld Model») (arXiv: 2205.05261). При исследовании (в рамках теории струн) последствий динамического натяжения струны для миров на бране стал очевиден ряд неожиданных и потенциально интересных факторов. Во-первых, при рассмотрении простейшего нетривиального случая двух типов струн было обнаружено, что механизм естественным образом генерирует новый тип сценария мира бран. Во-вторых, при исследовании того, может ли струна с почти бесконечным натяжением вызывать большие обратные реакции, которые искажают плоское пространство-время, было обнаружено, что эту проблему можно решить, применив механизм, разработанный в, казалось бы, не связанном контексте, а именно - создание дочерних вселенных в инфляционном сценарии. Возникает вопрос, является ли создание вселенной из плоского или почти плоского пространства необходимым следствием модели с динамически генерируемым миром-браной натяжения струн.
2022-05-12 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 12 мая 2022 года представлена статья Лахлана Г. Бишопа, Тимоти К. Ральфа, Фабио Коста (Lachlan G. Bishop, Timothy C. Ralph, Fabio Costa) из Квинслендского университета (Австралия): «Парадокс бильярдного шара для квантового волнового пакета» («Billiard-ball paradox for a quantum wave packet») (arXiv: 2205.05399). Представлена простая формулировка полностью квантового парадокса бильярдного шара, который перемещается назад во времени по замкнутой временной кривой (CTC). В отличие от большинства прошлых исследований такого типа, эта модель имитирует характерную квантовую эволюцию волнового пакета, движущегося во времени, путем включения неопределенности в локализацию связанной частицы. Авторы разрабатывают квантовую версию парадокса, в которой волновой пакет эволюционирует через область, содержащую червоточину («кротовую нору») машины времени. В этом контексте модель Дойча (D-CTCs) обеспечивает самосогласованные решения в виде смешанного состояния, состоящего из членов, которые представляют все возможные конфигурации эволюции частицы. С другой стороны, схема постселекционной телепортации (P-CTCs) предсказывает решения в чистых состояниях. Представленная в этой статье модель рассматривает квантовые парадоксы путешествий во времени. Появление квантовых решений указывает на то, что, как и его классический аналог, парадокс квантового бильярдного шара не является «врожденно патологическим» и не является некорректным. Несмотря на свою простоту, модель может послужить полезной основой для будущей работы над подобными проблемами, как классическими, так и квантовыми.
2022-05-09 На канале YouTube 09.05.22 выложена передача «Третья аксиома эвереттики» https://www.youtube.com/watch?v=4p82bT3FKtI&t=208s (Передача из цикла "Что такое эвереттика?" ).
2022-05-07 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 6 мая 2022 года представлена статья Сэмюэля Кайперса (Samuel Kuypers) из Оксфордского университета (Великобритания): «На неортодоксальных кубитах с приложением к задаче о замкнутой временной кривой» («On unorthodox qubits, with an application to the closed timelike curve problem») (arXiv: 2205.02797). В ортодоксальной квантовой теории наблюдаемые пространственно разделенных квантовых систем коммутируют («коммутационное ограничение»). По мнению автора, это серьезно ограничивает объяснительную силу квантовой теории. Например, ограничение не может быть выполнено при наличии замкнутых временных кривых (ЗВК), что не оставляет нам иного выбора, кроме как исключить ЗВК из рассмотрения. В общей теории относительности (ОТО) пространство-время может содержать ЗВК. — например, в метрике Геделя (1949), метрике Керра (Hawking & Ellis (1973), ch. 5), в пространстве-времени с проходимой червоточиной (Моррис и др. (1988) и Локвуд (2007), гл. 6). Даже если эти пространства-времена не реализованы в природе, это проблема, потому что ОТО не исключает существование ЗВК, в то время как ортодоксальная квантовая теория это делает. Следовательно, существует потенциальный конфликт между этими двумя теориями. Существуют модели кубитов на ЗВК, которые не сталкиваются с этим конфликтом между условием кинематической согласованности и ограничением коммутации (например, Deutsch (1991) и Lloyd et al. (2011)). Однако эти модели сформулированы в картине Шредингера и, следовательно, не являются локально реалистичными (Raymond-Robichaud. 2021). Чтобы сохранить локальный реализм, кубиты на ЗВК должны обрабатываться в представлении Гейзенберга. В данной статье исследуется модифицированная неортодоксальная квантовая теория, которая отличается от общепринятой теории только тем, что в ней отсутствует коммутационное ограничение. В частности, описывается система неортодоксальных кубитов и демонстрируется, как их можно использовать для моделирования систем на ЗВК и как они позволяют решить парадокс дедушки (в котором человек наблюдает более старую версию себя, которая путешествовала назад во времени, но, увидев эту более старую версию, он решает не путешествовать назад во времени; тем самым предотвращая наблюдаемую историю). Когда младшая Алиса, которая путешествует назад во времени, получает информацию от старшей Алисы (своего старшего "я"): "Я не путешествовала назад во времени" или: "Я путешествовала назад во времени", младшая Алиса разветвляется на два экземпляра, каждый из которых видит одно из этих сообщений. Один из этих экземпляров Алисы отправится в прошлое, а другой - нет. Более того, версия Алисы, которая действительно путешествует назад во времени, будет передавать сообщение, которое заставляет младшую Алису ничего не делать; в то время как версия Алисы, которая не путешествует назад во времени, передает сообщение, которое заставляет младшую Алису путешествовать назад во времени. Следовательно, история Алисы, находящейся на ЗВК, полностью согласована. Автор благодарен за многочисленные обсуждения статьи с Дэвидом Дойчем, Кьярой Марлетто и Влатко Ведралом.
2022-05-03 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 3 мая 2022 года представлена статья Дэвида Уоллеса (David Wallace) из Питтсбургского университета (США): «Небо голубое, и другие причины, по которым квантовая механика не недоопределяется доказательствами» («The sky is blue, and other reasons quantum mechanics is not underdetermined by evidence»); (arXiv: 2205.00568). Автор критикует «широко защищаемое мнение» о том, что проблема квантовых измерений является примером недоопределения теории доказательствами: более конкретно, мнение о том, что неизмененный унитарный квантовый формализм (интерпретируемый Эвереттом) эмпирически неотличим от механики Бома и от теорий динамического коллапса. (Автор отвечает на различные аргументы в пользу обратного в недавней литературе). Он утверждает, что никакая существующая версия механики Бома и никакая существующая версия динамического коллапса не могут воспроизвести больше, чем крошечную часть эмпирических данных, которые обосновывают квантовую механику; пока нет эмпирически успешного обобщения ни одной из этих теорий на квантовую теорию поля, и поэтому очевидная недоопределенность нарушается очень большим классом квантовых экспериментов, которые требуют в своем описании теории поля. Класс квантовых экспериментов, воспроизводимых любой из них, намного меньше, чем принято считать, и исключает многие из самых знаковых успехов квантовой механики, включая количественный учет рэлеевского рассеяния, который объясняет цвет неба. Унитарная квантовая механика настолько успешна, предсказывает так много новых подтвержденных эмпирических данных, что было бы чудом, если бы это не была хотя бы приблизительно правильная история о том, как устроен мир.
2022-05-02 На канале YouTube Павла Амнуэля 02.05.22 опубликована двадцать вторая передача цикла «Беседы об эвереттике» - «Вселенная, жизнь, сознание».
2022-05-02 Ведущий научный сотрудник МЦЭИ Ю.В.Никоновсообщает, что в архиве электронных препринтов 9 марта 2022 года представлена вторая редакция статьи Дэвида Э. Каплана и Сурджита Раджендрана (David E. Kaplan, Surjeet Rajendran) из Университета Джона Хопкинса в Балтиморе (США): «Причинно-следственная основа нелинейной квантовой механики» («A Causal Framework for Non-Linear Quantum Mechanics»); (arXiv: 2106.10576v2; Phys Rev. D 105 055002. 2022). Авторы отмечают, что их определение измерения соответствует операционной концепции измерения, описанной много-мировой интерпретацией (ММИ) квантовой механики. Но, в отличие от линейной квантовой механики, состояния измерительного устройства в целом будут перекрываться друг с другом. Даже после измерения может наблюдаться интерференция между состояниями. Квантовое состояние не может быть однозначно интерпретировано как прямая сумма многих возможных исходов, каждый из которых имеет вероятность, поскольку разные миры продолжают взаимодействовать. Кроме того, в квантовой механике, система подвергается декогеренции. Таким образом, различные результаты измерения не могут влиять друг на друга, т. е. мир “распадается” на множество различных миров. Но нелинейные эффекты могут сохраняться даже при наличии декогеренции, и, таким образом, различные результаты или “миры” могут продолжать влиять друг на друга. В общем, это также приводит к дальнейшей временной эволюции состояний |в сторону от их значений во время измерения. Если измерительные устройства были резонансными на определенной частоте, то может усиливаться эффект связи между “мирами”. В рамках нелинейной квантовой механики можно разработать резонансные системы, которые усиливали бы сигнал. Вполне возможно, что в то время, как крупномасштабная структура Вселенной и Солнечной системы являются классическими, значительное квантовое перекрытие могло произойти в ходе эволюции биологических систем. Например, возможно, что единичные квантовые события могли оказать огромное влияние на эволюционную динамику, например, на первоначальное образование или стабильность РНК. В этом сценарии образование жизни на Земле имеет низкую вероятность и, в большей части волновой функции Вселенной жизни на Земле нет. Также возможно, что существует множество биологических цивилизаций, которые в настоящее время сосуществующие на Земле, все они являются свидетелями одной и той же макроскопической классической вселенной. Интригующе, что в данном случае несмотря на то, что эволюционная динамика ослабляет локальную нелинейность, человеческая инженерия может полностью восстановить нелинейный эффект. Можно, например, рассмотреть сценарии теории игр, аналогичные тем, которые используются SETI для поиска внеземного разума для отправки сигналов другим цивилизациям, которые могут квантово-механически сосуществовать на Земле. Если бы достаточно многие из них также открыли нелинейную квантовую механику, было бы возможно установить связь между этими ветвями волновой функции (используя теоретические сценарии игр, и, например, с использованием частот и местоположений когерентных астрономических источников) для последовательного восстановления использования квантовых нелинейностей.
2022-04-27 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 26 апреля 2022 года представлена статья Марка Полковникова, Александра В. Грамолина, Дэвида Э. Каплана, Сурджита Раджендрана, Александра О. Сушкова (Mark Polkovnikov, Alexander V. Gramolin, David E. Kaplan, Surjeet Rajendran, Alexander O. Sushkov) из Бостонского университета и Университета Джона Хопкинса в Балтиморе (США): «Экспериментальный предел нелинейных зависящих от состояния членов в квантовой теории» («Experimental limit on non-linear state-dependent terms in quantum theory»); (arXiv: 2204.11875). Теоретические попытки введения нелинейной эволюции в квантовую теорию, как правило, страдали от проблем с причинно-следственной связью. Однако недавнее теоретическое предложение (David E. Kaplan, Surjeet Rajendran, 2022) ввело причинно-следственный механизм для описания нелинейной эволюции в рамках теории поля. При этом сохраняется причинность, сохраняется энергия и калибровочная инвариантность теории. Важно, что используемая авторами «нелинейная модификация бозонных операторов» дает возможность различать копенгагенскую и много-мировую интерппретации (ММИ) квантовой теории и «искать существование других миров, созданных квантовыми измерениями». Экспериментальные измерения были выполнены на сверхпроводящем кубите в квантовом процессоре IBM и на ядерном спине 15N в NV-центре в алмазе (в ноябре 2021 года). Установлена граница для параметра, который количественно определяет эту нелинейность. Авторы сообщают, что их подход аналогичен “телефону Эверетта”, предложенному в статье Дж. Полчински (Phys. Rev. Lett. 66, 397. 1991). В рамках ММИ накладываются ограничения на электромагнитное взаимодействие между различными ветвями Вселенной, созданные путем инициализации кубита в состояние суперпозиции. В работе делается правдоподобное предположение о том, что Вселенная эволюционировала преимущественно классически с незначительным квантовым разбросом. Ту же нелинейную конструкцию предполагается распространить на гравитационные поля, что открывает ряд «интригующих перспектив», в том числе возможность решения информационной проблемы черных дыр.
2022-04-27 В «Библиотеке» выставлен перевод П.Амнуэля 1 части статьи Филиппа Картера «Квантовое пространство-время и сознание» https://disk.yandex.ru/i/1pczB4olL5OrFg. Вторая часть была выставлена ранее: https://disk.yandex.ru/i/55iEUspNJr7f-A. Объясняя мотивы продолжения своей работы над переводом, П.Амнуэль пишет: «Должен сказать, что теперь стали понятнее многие моменты второй части. Сам подход Картера выглядит вполне адекватным и физикалистским, а не волюнтаристским, как может показаться по второй части».
2022-04-24 В «Библиотеке» выставлен перевод П.Амнуэля статьи А.Д.Линде «Вселенная, жизнь, сознание» https://disk.yandex.ru/i/kBj2P1oTVP6Jtw . Статья посвящена обсуждению философских проблем включения сознания в физическую картину мира: «Мне хотелось бы пойти на некоторый риск и сформулировать несколько вопросов, на которые у нас пока нет ответов. Не может ли сознание, как и пространство-время, иметь свои внутренние степени свободы, и что пренебрежение ими приведет к принципиально неполному описанию Вселенной? Что, если наши восприятия так же реальны (или, может быть, в определенном смысле даже более реальны), как материальные объекты? Что, если мое красное, мое синее, моя боль — это действительно существующие объекты, а не просто отражения реально существующего материального мира? Можно ли ввести «пространство элементов сознания» и исследовать возможность того, что сознание может существовать само по себе, даже в отсутствие материи, так же как и гравитационные волны, возмущения пространства, могут существовать в отсутствие протонов и электронов? Не окажется ли при дальнейшем развитии науки, что изучение Вселенной и изучение сознания будут неразрывно связаны, и прогресс в одном будет невозможен без прогресса в другом?».
2022-04-24 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 22 апреля 2022 года представлена статья Максимилиана Шлоссхауэра (Maximilian Schlosshauer) из Портлендского университета, (США): «Декогеренция: От интерпретации к эксперименту» («Decoherence: From Interpretation to Experiment»); (arXiv: 2204.09755). Предлагаются размышления о программе декогеренции с акцентом на роли и взглядах Дитриха Зе (Heinz-Dieter Zeh; 8 мая 1932 - 15 апреля 2018). Со слов автора, открытие Зе решающей важности окружающей среды для описания квантовых систем было сделано в виртуальной изоляции и отвергалось в течение многих лет после этого. В то время Зе пришел к выводу, что его ранние работы по декогеренции практически разрушили его основную академическую карьеру, а 1970-е и начало 1980-х годов составили то, что он назвал “темными веками декогеренции”. Обсуждается приверженность Зе реалистичной интерпретации квантового состояния, которую он считал необходимой для последовательного понимания процесса декогеренции. Автор предполагает, что эта позиция была более фундаментальной, чем его поддержка интерпретации квантовой механики в «стиле Эверетта». В этом контексте, и его защита Эверетта, и происхождение его идей о декогеренции являются следствиями реалистичного взгляда на квантовое состояние; “волновую функцию или суперпозицию следует понимать онтически ...” Дается обзор экспериментов по декогеренции и описывается, в качестве примера, тесная взаимосвязь между экспериментальными достижениями и теоретическим моделированием в исследованиях декогеренции. Учитывая нынешний интерес к созданию устройств для квантовых вычислений, очевидно, что декогеренция будет продолжать играть центральную роль в квантовой науке в обозримом будущем. Во всяком случае, его роль будет только усиливаться по мере реализации все более крупных многокубитных систем и изучения квантовых явлений, связанных с когерентностью и запутанностью, во все возрастающих макроскопических масштабах. Дитрих Зе был первопроходцем, смелым и независимым мыслителем. Его голоса будет не хватать
2022-04-24 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 22 апреля 2022 года представлена вторая редакция статьи Дэвида Уоллеса (David Wallace) из Питтсбургского университета (США): «Жизнь и смерть в хвостах волновой функции GRW» («Life and death in the tails of the GRW wave»); (arXiv: 1407.4746v2). Проводится сравнение влияния «объективного» коллапса на «хвосты» волновой функции (то есть на компоненты суперпозиций, на которые коллапс не центрирован) в теории динамического коллапса Гирарди-Римини-Вебера («GRW») и интерпретации Эверетта. Современные версии интерпретации Эверетта не вводят «миры» или «умы» в качестве дополнительных терминов в формализм: скорее, они используют динамическую декогеренцию, чтобы показать, что унитарно развивающаяся волновая функция является суперпозицией существенно независимых квазиклассических миров. «Миры» следует понимать как структуры или паттерны, лежащие в основе квантового состояния: декогеренция, подавляющая интерференцию между квазиклассически определенными состояниями в суперпозиции, гарантирует, что множество таких паттернов развиваются почти независимо. Теории динамического коллапса имеют ту же онтологию, что и интерпретация Эверетта; они отличаются только динамикой; единственным эффектом механизма коллапса является ослабление амплитуд всех ветвей, кроме одной, но сами ветви продолжают развиваться нормально. Это предположение названо квази-эвереттианской динамикой (КЭД). Однако КЭД не вполне соответствует действительности: механизм коллапса имеет драматические динамические последствия для «хвоста» волновой функции. Дело в том, что естественным следствием унитарной теории Шредингера (для любой версии квантовой механики, которая рассматривает волновую функцию как представление макроскопической онтологии, такой как интерпретация Эверетта) является то, что с точки зрения наблюдателя, находящегося в «хвосте», эффектом коллапса суперпозиции частиц является изменение пространственной локализации частицы. То есть, все частицы в «хвосте», чьи аналоги находятся в основной части волновой функции, если они подвержены коллапсу, изменяют пространственную локализацию. Такой эффект имеет некоторые важные последствия для стабильности вещества в «хвостах»: если объекты в волновой функции смещаются примерно на метр от местоположения их аналога в основной части волновой функции, они становятся радиоактивными, с уровнем радиации вредным для живых существ в «хвостах». А значит, если бы живое существо (скажем, несчастный кот Шредингера) было смещено более чем на метр или около того от своего аналога, и оно должно было поглощать все ионизирующее излучение, испускаемое радиоактивными компонентами своего тела (даже не учитывая вероятное излучение от окружающей материи), оно получило бы дозу облучения около 100 бэр в год. Это очень неблагоприятно для живого существа. Автор напоминает, что программа динамического коллапса надеялась установить с чрезвычайно высокой вероятностью, что агенты будут наблюдать квантовую статистику очень близкую к средним значениям, предсказанным квантовой механикой. Однако, агенты либо будут наблюдать квантовую статистику, предсказанную квантовой механикой, либо со временем умрут от радиационной болезни. Автор полагает, что этот промежуточный результат избавляет динамические теории коллапса от проблемы структурированных хвостов и гарантирует, что они, в конце концов, решают проблему измерения. В частности, это объясняет, почему научное сообщество до сих пор наблюдало статистические результаты в соответствии с квантовой механикой (через антропный факт, что миры, в которых наблюдались нарушения, теперь являются радиоактивными пустынями). И это объясняет, почему рационально надо действовать так, как если бы предсказания квантовой механики были истинными (потому что в тех мирах, где они оказываются ложными, мы обречены).
2022-04-24 В «Библиотеке» выставлен перевод П.Амнуэля статьи Филиппа Картера «Квантовое пространство-время и сознание». https://disk.yandex.ru/i/55iEUspNJr7f-A. Объясняя мотивы своей работы над переводом, П.Амнуэль пишет: «Что до Картера, то я воспринял его статью как пример, показывающий, какие серьезные усилия прилагаются, чтобы попытаться склеить науку и эзотерику. Картинки там красивые, а упоминания всяких бран могут произвести неизгладимое впечатление. Браны Картера не имеют никакого отношения к бранам из струнных теорий. С таким же успехом он мог назвать свои «высшие размерности» любым другим словом, но для научности говорит о бранах, поскольку вполне можно сказать, что существуют браны более высоких размерностей. Статья показывает, как эзотерики стараются прицепить древних мистиков к современной науке. Пейдж делает примерно то же по отношению к Библии…».
2022-04-21 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 21 апреля 2022 года представлена статья Марины Кортес, Стюарта А. Кауфмана, Эндрю Р. Лиддла, Ли Смолина (Marina Cortês, Stuart A. Kauffman, Andrew R. Liddle, Lee Smolin) из Института теоретической физики Периметр (Канада), Лиссабонского университета (Португалия) и Института системной биологии в Сиэтле (США): «Биокосмология: Биология с космологической точки зрения» («Biocosmology: Biology from a cosmological perspective»); (arXiv: 2204.09379). Вселенная содержит все, что существует, включая жизнь. Обсуждается, должны ли космология и физика быть изменены, чтобы иметь возможность решать определенные вопросы, возникающие при их пересечении с биологией. Показано, что вселенная, содержащая жизнь в той форме, в которой она существует на Земле, радикально неэргодична, поскольку подавляющее большинство возможных организмов никогда не будет реализовано. Авторы ввели новый класс статистико-механических систем, которые назвали системами III типа (к ним отнесли жизнь). Это случаи, для которых скорость расширения и добавления нового состояния в гильбертово пространство настолько велика и взрывоопасна, что мы не можем предвидеть выражение всех состояний в этом гильбертовом пространстве за время порядка конечного времени жизни Вселенной. Альтернативной характеристикой системы типа III является то, что она имеет по крайней мере одну подсистему или компоненту, которая поставляется в огромном количестве альтернативных версий, которые постоянно добавляются и примерно эквивалентны энергетически. Это подразумевает поразительное отличие от равновесных систем типа I, для которых быстро достигается равенство средних значений по времени и ансамблю. Как следствие, в системах типа III во Вселенной недостаточно ни времени, ни пространства, ни материала для того, чтобы когда-либо реализовать более крошечной доли допустимых возможных состояний этих подсистем, пока система все еще относится к типу III, то есть пока она все еще "жива". Узкого чисто редукционистского стиля недостаточно, чтобы дать полное объяснение такого рода вопросам. Исходя из этого, авторы утверждают, что полные объяснения в космологии требуют сочетания редукционистских (необходимы для понимания микроскопических степеней свободы живых систем) и функциональных объяснений (требуются для объяснения сложных, структурированных степеней свободы). Функция определяется в терминах кантовских Целых («Whole»). В кантовском Целом части существуют во Вселенной для Целого и посредством Целого. Все живые организмы - это кантовские Целостности.
2022-04-19 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 19 апреля 2022 года представлена статья Эмили Адлам (Emily Adlam) из Института философии Ротмана в Лондоне (Великобритания): «Настольные эксперименты по квантовой гравитации Также являются Проверкой Интерпретации квантовой механики» («Tabletop Experiments for Quantum Gravity Are Also Tests of the Interpretation of Quantum Mechanics»); (arXiv: 2204.08064). На стандартном языке квантовых основ интерпретация квантовой механики, онтология которой включает только квантовый сектор, известна как ψ-полная интерпретация, в то время как интерпретация, включающая физически реальный неквантовый сектор, известна как ψ-неполная интерпретация. Если в интерпретации и квантовый сектор, и неквантовый сектор физически реальны, ее называют ψ-дополненной. Если физически реален только неквантовый сектор, интерпретацию обычно описывают как ψ-эпистемическую (такие модели автор называет ψ-нефизическими.) Все существующие попытки квантовать гравитацию предсказывают суперпозиции пространства-времени, и наоборот, если действительно могут существовать суперпозиции пространства-времени, кажется естественным ожидать, что гравитационное поле должно быть квантовано. В эксперименте Бозе-Марлетто-Ведрала (BMV), планируется изучать частицы в суперпозиции двух различных пространственных положений, что приводит к четырем различным конфигурациям, соответствующим четырем различным ветвям волновой функции, с различными изменениями фазы в разных ветвях. В каждой из четырех ветвей волновой функции будет различная структура пространства-времени, и именно эта суперпозиция пространств-времен будет опосредовать различные изменения фазы в каждой ветви. Ожидается, что частицы будут запутаны, и экспериментаторы будут проверять наличие запутанности. Утверждается, что подобные «настольные эксперименты по квантовой гравитации» предоставляют новую информацию об интерпретации квантовой механики: при соответствующих допущениях «ψ-полные» интерпретации (к ним автор относит интерпретацию Эверетта) обычно предсказывают, что эти эксперименты будут иметь положительный результат, «ψ-нефизические» интерпретации предсказывают, что эти эксперименты не будут иметь положительного результата, а для «ψ-дополненных» моделей могут быть аргументы в пользу любого исхода. (В настоящее время у нас нет прямых эмпирических доказательств того, что пространство-время может быть помещено в суперпозицию). Кроме того, согласно интерпретации Эверетта, мы обычно получаем суперпозиции макроскопически различных состояний, которые, безусловно, должны быть связаны с различными конфигурациями пространства-времени. Со слов автора "у эвереттианцев, похоже, нет иного выбора, кроме как признать существование пространственно-временных суперпозиций. То есть, с точки зрения Эверетта, само собой разумеется, что настольные эксперименты, направленные на демонстрацию существования пространственно-временных суперпозиций, в конечном итоге увенчаются успехом, а это означает, что провал таких экспериментов станет ударом по интерпретации Эверетта. Конечно, вероятно, существуют способы, с помощью которых интерпретация Эверетта могла бы быть адаптирована для решения такого поворота событий, но это, конечно, не то, чего наиболее естественно ожидали бы сторонники Эверетта". Интересна ремарка автора о том, что в нерелятивистском пределе квазиклассическое уравнение гравитации может быть использовано для получения уравнения нелинейной эволюции, известное как уравнение Шредингера-Ньютона, и известно, что нелинейность этого уравнения порождает дополнительные проблемы. В частности, уравнение связывает ортогональные ветви волновой функции, что означает, что на декогеренцию больше нельзя полагаться для предотвращения взаимодействий между макроскопически различными ветвями волновой функции. Это серьезная проблема для любой интерпретации квантовой механики, которая не постулирует коллапсы волновой функции.
2022-04-18 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 15 апреля 2022 года представлена вторая редакция статьи Захариаса Рупаса (Zacharias Roupas) из Критского университета (Греция) и Британского университета в Египте (Каир, Египет): «Обнаруживаемые вселенные внутри регулярных черных дыр» («Detectable universes inside regular black holes»; (arXiv: 2203.13295v2). Авторы обнаружили бесконечный спектр новых решений общей теории относительности с одной и той же массой-энергией и энтропией, которые описывают вселенную темной энергии внутри астрофизической черной дыры. В статье доказывается, что космологические черные дыры можно обнаружить с помощью экспериментов с космическим интерферометром LISA (лазерно-интерферометрической гравитационно-волновой обсерватории), работающим в диапазоне от мкГц до Гц. LIGO не может различить космологические черные дыры и черные дыры Шварцшильда. Таким образом, остается открытой возможность того, что обнаруженные LIGO черные дыры являются космологическими черными дырами. То есть, возникает захватывающая возможность того, что обнаружение черных дыр также является обнаружением вселенных с темной энергией. Если они могут эволюционировать в инфляционные вселенные, подобные нашей, и если последняя сама является таким объектом, остаются открытыми возможности, требующие дальнейшего изучения.
2022-04-15 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 7 мая 2021 года была представлена вторая редакция статьи Гурама Картвелишвили, Джастина Хури, Анушрута Шарма (Guram Kartvelishvili, Justin Khoury, Anushrut Sharma) из Пенсильванского университета (США): «Самоорганизующаяся Критическая Мультивселенная» (“The Self-Organized Critical Multiverse); (arXiv:2003.12594v2). Открытие того, что теория струн допускает вместе с механизмом вечной инфляции обширный ландшафт метастабильных вакуумов, привело у авторов к смене парадигмы в понимании фундаментальной физики. Это означает, что статистическая физика, возможно, в сочетании с эффектами отбора (антропными), сыграла определенную роль в определении физических параметров нашей Вселенной. Как и во многих других статистических системах, естественно, ожидать, что мультивселенная может демонстрировать фазовые переходы. Недавно было показано, что в некоторых регионах ландшафта наблюдаются неравновесные критические явления. Наш регион вакуума де Ситтера можно рассматривать как динамическую систему, управляемую входными данными, определяемыми притоком из окружающей среды. Таким образом, эта область выполняет вычисления, что может установить «дразнящую и потенциально глубокую связь» между минимальной вычислительной сложностью и процессом поиска в вакууме оптимальных ландшафтных регионов как систем, управляемых вводом.
2022-04-13 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 13 апреля 2022 года представлена статья Т.Н. Палмер (T.N. Palmer) из Оксфордского университета (Великобритания): «Дискретизированное Гильбертово пространство и супердетерминизм» («Discretised Hilbert Space and Superdeterminism»; (arXiv: 2204.05763). Автор предлагает супердетерминистскую теорию - кандидата на преемника квантовой физики, основанную на дискретизированном Гильбертовом пространстве. Пространство состояний квантовой механики в этом случае является сингулярным пределом дискретизированной модели. И в детерминированной и в супердетерминированной теории, будущее определяется прошлым. Однако в супердетерминисткой теории не обязательно изменение прошлого определенным образом соответствует изменению будущего. Неверно разделение на динамические законы и начальные условия, как если бы они были независимы друг от друга. В данной модели Вселенная представляет собой детерминированную систему, развивающуюся на некотором фрактально-инвариантном множестве в космологическом пространстве состояний. Нельзя произвольно изменять начальные условия, сохраняя неизменными динамические законы – произвольное изменение начальных условий выводит из инвариантного множества в точку, которая несовместима с динамическими законами. Неверно и представление о том, что существует только одно начальное состояние, которое может привести к нарушению неравенств Белла. Существует бесконечно много начальных состояний, которые приводят к нарушению неравенства Белла. Мощность множества Кантора не меньше мощности множества действительных чисел. Теорема Островского говорит нам, что, по сути, в математике существует только два класса метрик: евклидова метрика и p-адическая метрика. Из-за тесной связи p-адических чисел с фрактальной геометрией p-адическая метрика является естественной метрикой для данной модели, основанной на фрактальной геометрии в пространстве состояний. По мнению автора, супердетерминисткая модель может лучше сочетаться с общей теорией относительности, чем квантовая механика.
2022-04-11
2022-04-07 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 06 апреля 2022 года представлена статья Гила Калаи (Gil Kalai) из Еврейского университета Иерусалима и Интердисциплинарного центра в Герцлии (Израиль): «Квантовые компьютеры, Предсказуемость и Свобода воли» («Quantum Computers, Predictability, and Free Will»; (arXiv: 2204.02768). Со слов автора, цель статьи состоит в том, чтобы опровергнуть представление о том, что детерминированные законы природы исключают свободу воли. Автор защищает позицию, согласно которой будущее «человеческого существа» Алисы (как и будущее гораздо более простых квантовых систем) – во многом непредсказуемо. Предполагается, что человеческий интеллект на самом деле происходит от мозговых процессов, которые обеспечивают стабильную классическую информацию и напоминает классический компьютер, в то время как квантовая природа мозговых процессов добавляет к вычислениям элемент непредсказуемой случайности. Мало того, что в принципе невозможно предсказать ответы на простые вопросы, касающиеся будущего Алисы, но также невозможно рассматривать ответы на такие вопросы как части причинно–следственной связи между прошлым и будущим. Ключевым моментом является то, что наши представления о концепции времени и причинно-следственной связи между прошлым и будущим справедливы только в ограниченных и зашумленных физических системах, в то время как в более широком масштабе всей Вселенной концепция причинно-следственной связи между прошлыми и будущими событиями и даже само понятие времени (в значительной степени) теряют свое значение. Физически значимое определение Алисы в настоящем требует множества вариантов ее будущего и опровергает утверждение о том, что решения Алисы в настоящем уже были определены прошлым. Таким образом, возможно, что в будущем Алисы есть определенный компонент, который зависит исключительно от ее решений в настоящем. Подчеркивается, что “непредсказуемость” относится также к вероятностным предсказаниям, и что “множественные возможности для будущего” относятся к ситуации, когда существует множество вероятностных возможностей для будущего, а не одно распределение вероятностей его описывающее. Успешное разрешение очевидного противоречия между законами природы и свободой воли дало бы сильную поддержку позиции о том, что свободная воля является реальным явлением.
2022-04-06 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 04 апреля 2022 года представлена новая статья Овидиу Кристинел Стойка (Ovidiu Cristinel Stoica) из Национального института физики и ядерной инженерии в Бухаресте (Румыния): «Универсальность трансляционной квантовой динамики» («Versatility of translational quantum dynamics»); (arXiv: 2204.01426). Данная статья — одна из ряда работ автора, затрагивающих вопросы многомировой интерпретации квантовой механики (ММИ). Он считает, что описанный им гамильтониан достаточно универсален, чтобы описать «динамику миров неограниченной сложности и чрезвычайного разнообразия». Применим ли такой формализм к нашему миру, еще предстоит выяснить. Но даже в таком случае это не будет “теорией всего”, потому что все равно будут необходимы дополнительные уравнения, включающие наблюдаемые.
2022-04-04 На канале YouTube 04.04.22 выложена пятая передача из цикла "Что такое эвереттика?" https://www.youtube.com/watch?v=Bq79_9uMCnQ (Четвёртая передача «Первая аксиома эвереттики» была выложена 28.03.22 https://www.youtube.com/watch?v=ZKXk6Wgyt_w&t=6s
2022-04-02 На сайте Института исследований природы времени в разделе «Тематические публикации» от 31.03.22 (http://www.chronos.msu.ru/ru/rnews/novosti-ot-uchastnikov-seminara/novosti-ot-uchastnikov-seminara/tematicheskie-publikatsii-31-03-2022-g , автор – И.Л.Зерчанинова) приводится обзор докладов Четвертой Международной конференции «Тибетология и буддология: на стыке науки и религии» и связанных с ней материалов. ( Вестник Института востоковедения РАН, 2021, № 1). Среди них - ссылка на информацию Ольги Липич «Черниговская: буддисты помогут ученым связать мир идей и материю» (11.11.20, сайт «Сохраним Тибет», http://savetibet.ru/2020/11/11/buddhism-and-science.html). В информации сообщается, что «директор Института когнитивных исследований СПбГУ, член-корреспондент РАО Татьяна Черниговская надеется, что сотрудничество российских ученых с Далай-ламой и буддийскими монахами поможет найти связь между идеальным и материальным мирами, а также ответить на другие вопросы нейронаук, физики и медицины. Об этом она рассказала РИА Новости по итогам конференции в Институте Востоковедения РАН "Тибетология и буддология на стыке науки и религии"…
2022-03-31 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 30 марта 2022 года представлена статья Эмили Адлам (Emily Adlam) из Института философии Ротмана в Лондоне (Великобритания): «Нужна ли науке Интерсубъективность? Проблема подтверждения в ортодоксальных интерпретациях квантовой механики» («Does Science need Intersubjectivity? The Problem of Confirmation in Orthodox Interpretations of Quantum Mechanics»); (arXiv: 2203.16278). Констатируется, что любая успешная интерпретация квантовой механики не должна быть основана только на математике, но также должна демонстрировать четкую связь с эмпирическими данными, которые и являются доказательствами адекватности теории. Уже в начале статьи напоминается, что «проблема вероятности» и связанная с ней проблема эмпирического подтверждения интерпретации широко обсуждались в контексте концепции Эверетта. Здесь же обсуждается класс «ортодоксальных интерпретаций» квантовой механики, который включает QBism, нео-копенгагенские интерпретации, прагматические интерпретации и некоторые версии реляционной квантовой механики. Для того, чтобы мы могли рационально верить любой ортодоксальной интерпретации, необходимо что-то сделать с эмпирическим подтверждением, и поэтому эти подходы должны быть дополнены некоторым механизмом выбора и актуализации результатов измерений таким образом, чтобы обеспечить, по крайней мере, некоторый минимальный уровень межсубъективного согласия между различными относительными описаниями. Интересно рассмотрение автором воспоминания как измерения. Просмотр воспоминаний и/или записей следует понимать как измерение в каком-то физическом регистре (например, в человеческом мозге), и, следовательно, теорию, которую мы пытаемся подтвердить, можно понимать как распределение вероятностей по измерениям в памяти и записях. Ортодоксальные интерпретации не позволяют нам делать предположение, что воспоминания и записи являются точным отражением того, что «действительно произошло», поскольку то, что «действительно произошло», как правило, будет относиться к другому наблюдателю — то есть либо к прошлой версии нас самих, либо они будут относиться к какому-то другому наблюдателю, который проводил измерения и передавал записи. Рассматривается возможность-невозможность трансцендентального доступа к прошлому, когда наблюдатели просто имеют какой-то трансцендентальный доступ к фактам о том, что произошло в прошлом, но ортодоксальные интерпретации не допускают взгляда из ниоткуда (или «взгляд из ниоткуда» может существовать, но он непознаваем и невыразим), с которым можно сравнивать разные точки зрения. Что бы ни представлял собой этот трансцендентальный доступ, он не может гарантировать, что воспоминания, которые наблюдатели имеют о событиях в прошлом, соответствуют тому, что наблюдали предыдущие версии самих себя. Автор отмечает, что очень похожие вопросы обсуждаются в контексте интерпретации Эверетта. А, например, Льюис (1979) предлагает подход, предназначенный для рассмотрения случаев с убеждением о самонаведении, то есть убеждений о том, где или когда человек находится в пределах данного возможного мира. Он постулирует набор «центрированных миров», где центрированный мир представляет собой упорядоченный набор в рамках возможного мира и его перспектив (возможные миры заменяются мирами центрированными). При таком подходе возможно изменение наших представлений о реальности в целом. Автор отмечает, что мы могли бы надеяться использовать эту стратегию в контексте ортодоксальных интерпретаций, определив центрированный мир как перспективу относительно определенного наблюдателя. То есть, пусть центрированный мир будет упорядоченным набором сети точек зрения (которая играет роль «возможного мира» в контексте ортодоксальной интерпретации) и «перспективы» (в смысле ортодоксальной интерпретации, то есть набора относительных фактов, описанных относительно наблюдателя или что-то подобное). Затем, когда я делаю наблюдение, я могу исключить все центрированные миры, которые несовместимы с моими наблюдениями, что может привести к изменениям в количестве центрированных миров, связанных с некоторыми возможными сетями перспектив, и, таким образом, в целом вероятности, которые я присваиваю различным сетям перспектив, могут измениться, что в конце концов позволит выполнить эмпирическое подтверждение интерпретации в ортодоксальном контексте.
2022-03-30 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 21 марта 2022 года представлена статья Пулана Тадроса и Мохаммеда Ассаада Абдель-Рауфа (Poulan Tadros, Mohamed Assaad Abdel-Raouf) из Университета Турку (Финляндия), Университета Айн-Шейда в Каире (Египет): «Устранение сингулярности черных дыр в космологии мира Браны» («Eliminating black holes singularity in Brane world Cosmology»); (arXiv:2203.15785; Journal of High Energy Physics, Gravitation and Cosmology, 2022, 8, 259-264). Авторы отмечают, что в недавних работах была предложена конструкция, приводящая к возникновению вселенных внутри черных дыр. Этот результат может быть получен из 4D черной дыры, встроенной в 5D пространство-время с пятым измерением, в контексте космологии мира двух бран. Причем, есть вариант модели, в котором две браны имеют пару вселенная-антивселенная (вселенная на видимой бране и антивселенная на скрытой бране), Эта конструкция решает информационный парадокс черной дыры, поскольку информация, попадающая в черную дыру, появляется в новой вселенной без каких-либо потерь.
2022-03-26 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 20 марта 2022 года представлена статья Джея Лоуренса (Jay Lawrence) из Дартмутского колледжа в Ганновере и Чикагского университета (США): «Указатели для квантовой теории измерений» («Pointers for Quantum Measurement Theory»); (arXiv:2203.11144). Термин “указатель” ввел Дитер Зе в 1970 году. Основным положением статьи является то, что указатель («рointer») представляет собой физическую систему, состоящую из двух отдельных частей, которая «может преодолеть разрыв между объектом исследования и наблюдателем (сознательным или иным)». Автор рассуждает о том, что значит “наблюдать суперпозицию” состояний указателя, привлекая взгляды фон Неймана (который поднял вопрос, в какой момент вектор состояния разрушается, давая уклончивый ответ на вопрос о возможности участия сознания наблюдателя), мысленный эксперимент «друга Вигнера», концепции декогеренции и соотнесенного состояния Эверетта. Эверетт утверждал, что вектор состояния не обязательно должен разрушаться, потому что состояние сознания наблюдателя в любой конкретной ветви вектора состояния регистрирует единственный однозначный результат, оставляя его слепым к существованию альтернативных результатов в других ветвях.
2022-03-22 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 20 марта 2022 года представлена статья Педро Ресенде (Pedro Resende) из Лиссабонского университета (Португалия): «Квалиа как физические измерения: математическая модель квалиа и чистых понятий» («Qualia as physical measurements: a mathematical model of qualia and pure concepts»); (arXiv:2203.10602). Предполагается, что квалиа и измерения имеют одинаковую природу, соответствующую фундаментальным процессам, посредством которых создается и физически хранится классическая информация, и что, следовательно, «трудная» проблема сознания по Чалмерсу и проблема измерения являются двумя аспектами одной и той же проблемы. Структура пространства квалиа соответствует геометрической модели наблюдателя и аналогична структуре пространства физических измерений. Никакого измерения не существует, если оно не переживается субъективно, хотя это понимается в фундаментальном смысле, который не зависит от ранее существовавших систем, наблюдателей и т.д. Автор цитирует Андрея Линде (A. Linde, The universe, life and consciousness, Science and the Spiritual Quest — New Essays By Leading Scientists [W. M. Richardson, R. J. Russel, P. Clayton, and K. Wegter-McNelly, eds.], Routledge, 2002, pp. 188–202): “Возможно ли ввести “пространство элементов сознания” и исследовать возможность того, что сознание может существовать само по себе, даже в отсутствие материи, точно так же, как гравитационные волны, возбуждения пространства, могут существовать в отсутствие протонов и электронов?” Предлагаемая идентификация измерений с квалией предшествует любой модели квантовой теории и любому обсуждению того, являются ли волновые функции реальными объектами или нет, «...такие сущности, как наблюдатели, могут фактически возникнуть из структуры Q (квалиа)». Интерсубъективность основана на связи различных наблюдателей таким образом, который приводит к логической версии квантовой суперпозиции.
2022-03-21 На канале YouTube 14.03.22 выложена третья передача из цикла "Что такое эвереттика?" https://www.youtube.com/watch?v=HFlq-imj6Ls&t=847s
2022-03-21 На канале YouTube Павла Амнуэля 21.03.22 опубликована двадцатая передача «Проблема наблюдателя» (двадцатая передача цикла «Беседы об эвереттике». https://www.youtube.com/watch?v=2Z1FMZMuzt4&t=857s
2022-03-15 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 13 марта 2022 года представлена статья Мартина Пола Вогана (Martin Paul Vaughan): «Квантовая логика соотнесенного состояния» («Relative State Quantum Logic»); (arXiv: 2203.06695). Разработана проективная квантовая логика в терминах соотнесенных состояний, подчеркивающая важность передачи информации между исследуемой системой и ее окружением, а также необходимость учета исторической эволюции системы. Утверждается, что формализм соотнесенного состояния обеспечивает механизм, с помощью которого может храниться информация о прошлой эволюции системы. Онтология физического состояния на основе интерпретации правила Борна связана с многозначными вероятностями, а не с бинарным выбором. Утверждается, что «факты» о мире соответствуют закодированной информации, которая будет разной для разных соотнесенных состояний. То есть то, что может быть «правдой» для данного одного соотнесенного состояния, может быть не «истинным» для другого. Вместо того, чтобы пытаться заставить квантовую теорию вписываться в рамки двоичной логики, утверждается, что трехзначная троичная логика с ее "истинно", "ложно" и "неопределенно" (U) является более подходящей; предложена схема сопоставления вероятностей с этими значениями. Вводится новая концепция "частичных соотнесенных состояний", как возможный механизм хранения исторической информации о системе в среде. На протяжении всей работы автор подчеркивает роль передачи информации между системами и идею о том, что именно информационное содержание системы определяет "факты о мире".
2022-03-15 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 11 марта 2022 года представлена статья Самуэля Баррозу Беллидо и Мариуша П.Дабровски (Samuel Barroso Bellido, Mariusz P. Dabrowski) из Института физики Щецинского университета, Национального центра ядерных исследований в Отвоцке и Коперниковского Центра междисциплинарных исследований в Кракове (Польша): «Наблюдаемые отпечатки Нашей Потерянной Двойной Антивселенной»; («Observational Imprints of Our Lost Twin Anti-Universe»); (arXiv:2203.07069). Авторы считают, что с каждым годом сценарий мультивселенной приобретает все более важный статус в теоретической физике. Они рассмотрели наблюдаемые последствия (в спектре космического микроволнового фона) запутывания между нашей вселенной и гипотетической двойной анти-вселенной в схеме третичного квантования канонической квантовой гравитации. Исходя из своих предыдущих исследований, ими выбрана некоторая особая форма межвселенского взаимодействия, которая позволяет энтропии запутывания пары вселенных расходиться в некоторых критических точках их классической эволюции. Отмечено, что необходимы дополнительные наблюдательные эксперименты, направленные на изучение самых ранних стадий нашей Вселенной, таких как поиск первичных гравитационных волн или космического нейтринного фона, что позволило бы фальсифицировать существование двойной анти-вселенной или некоторых других запутанных вселенных.
2022-03-11 На канале YouTube 07.03.22 выложена вторая передача из цикла "Что такое эвереттика?" https://www.youtube.com/watch?v=yjS0dUSxkyY
2022-03-11 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 10 марта 2022 года представлена статья Самуэля Баррозу Беллидо и Фабиана Вагнера (Samuel Barroso Bellido and Fabian Wagner) из Института физики Щецинского университета (Польша): «Новый Гость в Третично Квантованной Мультивселенной» («A New Guest in the Third Quantized Multiverse»; (arXiv: 2203.05387). Основываясь на более ранних результатах о межвселенской запутанности, авторы указывают на то, что теория, а вместе с ней и картина невзаимодействующих пар вселенная-антивселенная, являются неполными. Предлагается простое решение проблемы, с добавление к формализму нового квантового поля. Хотя этот формализм приводит к тем же предсказаниям, что и стандартное третичное квантование, становится очевидным, что разные вселенные действительно взаимодействуют, что является источником изменения энтропии межвселеннской запутанности. Взаимодействие между вселенными, в свою очередь, делает их наблюдаемыми, по крайней мере, в принципе, таким образом, возможно, выводя мультивселенную из области метафизики.
2022-03-11 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 9 марта 2022 года представлена вторая редакция статьи Дэвида Э. Каплана и Сурджита Раджендрана (David E. Kaplan, Surjeet Rajendran) из Университета Джона Хопкинса в Балтиморе США): «Причинно-следственная основа нелинейной квантовой механики» («A Causal Framework for Non-Linear Quantum Mechanics»); (arXiv:2106.10576). Авторы разработали структуру измерения в нелинейной квантовой механике (НКМ) и показали, что НКМ позволяет последовательно описывать процесс измерения и является причинной. Принимается точка зрения, что измерение возникает в результате взаимодействия между измерительным прибором и квантовой системой, взаимодействие которых описывается уравнениями эволюции во времени. По мнению авторов, эта точка зрения аналогична трактовке измерения в «многомировой» интерпретации квантовой механики — нельзя реализовать, например, «копенгагенскую интерпретацию» измерения с ее «крахом» волновой функции, поскольку такой коллапс вызывает насилие над нелинейными членами. Предлагается несколько экспериментальных методов для изучения нелинейных квантовых эффектов. Важным аспектом нелинейности является то, что она устраняет свободу независимого выполнения преобразований координат для отдельных вселенных (т.е. метрик). По-прежнему существует свобода выбора координат на пространственно-временном многообразии (общая ковариация) - но как только эти координаты выбраны, изменение координат должно отражаться на всех частях волновой функции. В отличие от линейной квантовой механики, где каждая метрика в суперпозиция развивается независимо, нелинейная эволюция неразрывно связывает все эти показатели вместе. Таким образом, нелинейность может быть естественным образом встроена в 3 + 1 гамильтонов формализм Общей Теории Относительности. В частности, в канонической инфляционной космологии наблюдаемая вселенная находится в макроскопической квантовой суперпозиции с большим числом N других вселенных, которые все обладают одинаковыми статистическими свойствами, но локально совершенно различны. Предложены эксперименты, которые пытаются измерить нелинейность путем прямого манипулирования ожидаемыми значениями различных полей. В канонической инфляционной космологии наблюдаемая вселенная находится в макроскопической квантовой суперпозиции с большим числом N других вселенных, которые все обладают одинаковыми статистическими свойствами, но локально совершенно различны. Наконец, предложены эксперименты, которые пытаются измерить нелинейность путем прямого манипулирования ожидаемыми значениями различных полей.
2022-03-08 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 6 марта 2022 года представлена статья Влатко Ведрала (Vlatko Vedral) из Оксфордского университета (Великобритания) и Национального университета Сингапура (Сингапур): «Классическая Эволюция Без Эволюции» («Classical Evolution Without Evolution»); (arXiv: 2203.03065). В квантовом формализме Пейджа-Вуттерса, временные переменные двух подсистем коррелируют, причем одна подсистема “эволюционирует” динамически по отношению к другой, даже если вся система стационарна. Эти две подсистемы обычно называются системой и часами, совокупная система называется вселенной. В конечном счете, ключом к получению динамики без динамики является принцип сохранения энергии, который приводит к корреляции между временами, относящимися к различным подсистемам. Все классические смешанные состояния возникают либо из-за недостатка знаний, либо могут рассматриваться как описание ансамбля вселенных. Любая квантовая эволюция, основанная на запутанности между различными подсистемами, может быть рассмотрена таким образом. В квантовой физике это возвращает нас в конечном счете, к интерпретации соотнесенного состояния Эверетта. Вышеизложенный подход поднимает ряд вопросов, которые стоит изучить в будущем.
2022-03-08 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 6 марта 2022 года представлена статья Эдди Кеминг Чена (Eddy Keming Chen) из Калифорнийского университета в Сан-Диего (США): «Сильный детерминизм» («Strong Determinism»); (arXiv: 2203.02886). Строго детерминированная теория физики — это та, которая допускает ровно одну возможную историю Вселенной. По словам Пенроуза (1989), "дело не только в том, что будущее определяется прошлым; вся история Вселенной зафиксирована, согласно некоторой точной математической схеме, на все времена". Такая необычная особенность может показаться недостижимой в любой реалистичной и простой теории физики. В этой статье предлагается определение сильного детерминизма и противопоставление его определению стандартного детерминизма и супер-детерминизма Вселенной (понятие сильного детерминизма введено в Пенроузом в 1989), что отличается от понятия “сверхдетерминизма”, которое иногда используется в контексте избегания нелокальности Белла. Обсуждаются его последствия для объяснения, причинно-следственной связи, прогнозирования, фундаментальных свойств, свободы воли и модальности. Представлен первый пример реалистичной, простой и строго детерминированной физической теории – «Вентакулус Эверетта». Как следствие физических законов, история мультивселенной Эверетта не могла быть иной. Если Вентакулус Эверетта эмпирически эквивалентен другим квантовым теориям, мы никогда не сможем эмпирически выяснить, является ли наш мир сильно детерминированным или нет. Даже если сильный детерминизм не соответствует действительности, он ближе к реальному миру, чем мы предполагали, что имеет значение для некоторых центральных тем философии и основ физики.
2022-03-06 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 3 марта 2022 года представлена статья Сурава Кешари Саху, Ашутоша Дэша, Радхика Ватсана, Табиша Куреши (Sourav Kesharee Sahoo, Ashutosh Dash, Radhika Vathsan Tabish Qureshi) из кампуса BITS-Pilani (Индия), Университета Гете во Франкфурте-на-Майне (Германия), Центра теоретической физики в Нью-Дели (Индия): «Тестирование гравитационного само-взаимодействия с помощью интерферометрии материальных волн» («Testing Gravitational Self-interaction via Matter-Wave Interferometry»); (arXiv: 2203.01787). Уравнение Шредингера является линейным и, следовательно, допускает суперпозицию любых двух различных решений. Однако в нашем знакомом классическом мире суперпозиция макроскопически различных состояний, например состояния, соответствующего двум хорошо разделенным различным положениям частицы, никогда не наблюдается. Принимая во внимание декогеренцию, вызванную окружающей средой, можно утверждать, что состояния чистой суперпозиции сохраняются недолго. Однако декогеренция основана на унитарной квантовой эволюции, и, если кто-то попытается объяснить, как один результат приводит к определенному измерению, в конечном итоге он будет вынужден прибегнуть к какой-то версии интерпретации многих миров. Другой класс подходов к решению этой проблемы вызывает некоторую нелинейность в квантовой эволюции, которая может привести макроскопические состояния суперпозиции в одно макроскопически отличное состояние. Различные теории приписывают происхождение нелинейности различным источникам, например, возникающей нелинейности в уравнении эволюции или гравитационному взаимодействию. Значительные усилия были затрачены на поиск способов проверки любой нелинейности. Например, был предложен эксперимент в космосе, который включал бы подготовку макроскопического зеркала в состоянии суперпозиции. Проблема с такими экспериментами, даже если они успешны, в том, что трудно исключить роль декогеренции в разрушении суперпозиции. Авторы предлагают «экспериментальный маршрут», который позволит различать эффект гравитационного само-взаимодействия (пока нет никаких доказательств относительно того, действительно ли природа ведет себя таким образом.) и эффект декогеренции, вызванной окружающей средой.
2022-03-01 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 25 февраля 2022 года представлена статья Аурелиана Дрезе (А. Drezet) из университета Гренобль - Альпы (Франция): «Неопределенный причинно-следственный порядок с фиксированным временным порядком для электронов и позитронов» (“Indefinite causal order with fixed temporal order for electrons and positrons”); (arXiv: 2202.12886). В ней приводится анализ неопределенного причинно-следственного порядка в релятивистской квантовой механике, основанный на электронно-позитронной картине Р.П. Фейнмана, включающей электроны с отрицательной энергией, движущиеся назад во времени. Как было сказано Фейнманом, в основе квантовой механики лежит принцип суперпозиции. Примечательно, что в последнее десятилетие этот принцип был распространен на классическое понятие причинности, приводящее к определению наложенного или неопределенного причинного порядка (НПП) квантовых событий. НПП-ки интенсивно изучались на предмет их потенциального применения в качестве ресурсов для обработки информации. На фундаментальном уровне НПП-ки предлагают мотивирующие перспективы для понимания связей между квантовой механикой и общей теорией относительности, а также для их потенциального объединения. Среди систем, которые были предложены для иллюстрации концепции НПП - квантовый переключатель (КП), который является парадигматичным из-за своей простоты. Показано, что реализации КП с фиксированным временным порядком, нарушающие некоторые причинно-следственные неравенства, становятся возможными в экстремальных условиях внешнего электромагнитного поля, допускающих наличие замкнутых времени-подобных кривых (ЗВК). Автор подчеркивает, что все его результаты основаны на корреляциях, что позволяет избежать проблем с нарушениями микрокаузальности при передаче сигналов. В рамках его модели можно создавать ЗВК, которые активно обсуждались в последние годы за пределами области общей теории относительности, в рамках которой они возникли. В этом смысле "гипотеза защиты хронологии", выдвинутая Хокингом, здесь заменяется условием отсутствия сигналов, защищающим наш макроскопический локальный мир от квантовых ЗВК.
2022-02-23 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 22 февраля 2022 года представлена статья Пола Тодда (Paul Todd): «Некоторые вопросы о конформной циклической космологии» («Some questions about Conformal Cyclic Cosmology»); (arXiv: 2202.10864). Согласно Пенроузу (лауреату Нобелевской премии по физике 2020 года), Большой взрыв не был началом Вселенной. Он – лишь один из серии циклических Больших взрывов, каждый из которых породил новую эпоху - «эон» в истории нашей Вселенной. То есть, до Большого взрыва, согласно концепции конформной циклической космологии (CCC) Пенроуза, существовала более ранняя Вселенная, признаки которой мы сегодня можем наблюдать на карте реликтового излучения (РИ). Пенроуз и его коллеги убеждены, что имеющаяся карта РИ с точками Хокинга (аномальными круглыми пятнами в реликтовом излучении со значительно повышенной температурой), появление которых обусловлено предыдущим эоном, подтверждает концепцию CCC. Эти данные по РИ по-прежнему остаются спорными, но споры почти всегда ведутся о статистической значимости, а не о самом существовании точек Хокинга. В контексте изложенного обсуждаются вопросы, касающиеся астрофизики всего этого. В частности, если бы в предыдущем эоне существовала супер-массивная черная дыра, это, безусловно, привело бы к неоднородностям плотности материи в эоне настоящем.
2022-02-21 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 17 февраля 2022 года представлена статья Неманьи Калопера (Nemanja Kaloper) из Калифорнийского университета в Дэвисе (США): «Панкосмическая относительность и Иерархии природы» («Pancosmic Relativity and Nature’s Hierarchies»); (arXiv: 2202.08860). Со слов автора, обычная Общая теория относительности (ОТО) - это ограничение предлагаемой в статье формулировки Панкосмической теории относительности рамками одного пузыря в мультивселенной. В частности, результатом последовательности зарождений пузырьков-вселенных являются системы вложенных расширяющихся пузырьков с различными параметрами. Это может обеспечить простую основу для описания вечной инфляции в полуклассическом пределе и фактически может быть игрушечной моделью, которая включает эффекты квантовой гравитации и, в частности, эффекты пространственно-временной пены и червоточин («кротовых нор»).
2022-02-16 На сайте Института исследований природы времени в разделе «Тематические публикации» от 14.02.22 (автор – И.Л.Зерчанинова) приводится реферат книги Алиссы Ней (Alyssa Ney) «The World in the Wave Function. A Metaphysics for Quantum Physics» (http://www.chronos.msu.ru/ru/rnews/novosti-ot-uchastnikov-seminara/novosti-ot-uchastnikov-seminara/tematicheskie-publikatsii-14-02-2022-g ):
2022-02-16 На сайте Института исследований природы времени в разделе «Тематические публикации» от 14.02.22 (автор – И.Л.Зерчанинова) приводится реферат статьи Джареда Вогана и Барака Шошани (Barak Shoshany, Jared Wogan) из Университета Брока (Канада) «Машины времени с червоточинами и множественные истории» (Wormhole Time Machines and Multiple Histories» (arXiv:2110.02448v1 [gr-qc] 6 Oct 2021, https://arxiv.org/abs/2110.02448 ):
2022-02-14 Ведущий научный сотрудник МЦЭИ Ю.В.Никогов сообщает, что в архиве электронных препринтов 10 февраля 2022 года представлена статья Франсуа-Игоря Прися (Francois-Igor Pris) из Дортмундского университета (Германия): "Квантовая феноменология Хайдеггера"» («Heidegger’s quantum phenomenology»); (arXiv:2202.05668; International Conference in Quantum Mechanics and Quantum Consciousness. January 06-09, 2015. Bangalore, India. The International Journal for Transformation of Consciousness, 2015. pp. 288-303). В статье высказывается предположение, что квантовая механика — это наука нового типа, которая опровергает классическую метафизическую концепцию реальности. По мнению автора, проблема измерения является частным случаем более общей проблемы: трудной проблемы сознания, или проблемы объяснительного разрыва в философии разума. Среди различных видов “дуалистических решений проблемы измерения”, учитывающих сознание, упоминается и решение “многих разумов” ... «Процесс измерения в квантовой механике это витгенштейновская языковая игра, или, на метафизическом языке трансформации сознания Хайдеггера» ...
2022-02-14 На канале YouTube 14.02.22 выложена первая передача из нового цикла "Что такое эвереттика?" https://www.youtube.com/watch?v=sEHqYJbDXXQ
2022-02-12 В "Библиотеке" на личной странице А.Костерина обновлена его публикация "Комментарии к Началу бесконечности Д. Дойча". Обновление включает новый раздел "Ещё один комментарий к Началу бесконечности". (https://disk.yandex.ru/d/1_gLw7d-vYibPQ)
2022-02-10 На канале YouTube опубликована восемнадцатая передача цикла «Беседы об эвереттике». https://www.youtube.com/watch?v=ygkmVAJpyhs
2022-02-04 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в журнале «Математические структуры и моделирование» (редактор А.К. Гуц) N4 (60), 2021 г., (стр. 49-53) опубликована статья А.В. Полищука из Межрегиональной академии управления персоналом в Киеве (Украина): «Хронофизика и хроноинженерия для целей технологической ресуррекции: краткий обзор идей» http://msm.omsu.ru/RU/jrn60.html. Автор отмечает, что существует запрос со стороны общества не только на продление жизни, но и на её возвращение (то есть возвращение к жизни умерших). Для выполнения этой задачи, названной ресуррекцией (ресуррекция от лат. Resurrectio — воскрешение) предложены два (пока что гипотетических) способа: компьютерное моделирование и манипулирование временем («хроноинженерия»). Поскольку компьютерное моделирование даст в итоге, строго говоря, копию человека, а не его самого (хотя некоторые это и оспаривают), рассматривается вариант хроноинженерии.
2022-02-04 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 3 февраля 2022 года представлена статья Келвина Дж. Маккуина и Льва Вайдмана (Kelvin J. McQueen, Lev Vaidman): «Как интерпретация Множества Миров привносит Здравый смысл в Парадоксальные квантовые эксперименты» («How the Many Worlds Interpretation brings Common Sense to Paradoxical Quantum Experiments»); (arXiv:2202.01438; Scientific Challenges to Common Sense Philosophy (2020), R. Peels, J. de Ridder R. van Woudenberg (eds.). London Routledge. New York: Routledge. pp. 40-60). Многомировая интерпретация квантовой механики (MМИ) утверждает, что мир, в котором мы живем, является лишь одним из многих параллельных миров. Широко распространено мнение, что из-за приверженности параллельным мирам MМИ нарушает здравый смысл. Некоторые отвергают MМИ на этом основании, несмотря на множество преимуществ для физики (например, соответствие теории относительности, математическая простота, реализм, детерминизм и т. д.). Авторы доказывают, что здравый смысл на самом деле поддерживает ММИ. Представлено несколько квантово-механических экспериментов, которые, по-видимому, демонстрируют нелокальное «действие на расстоянии». В MМИ наш мир все еще содержит парадоксальные явления, но эти явления возникают и могут быть локально объяснены в терминах (множественных) непрерывных траекторий во всей физической вселенной, которая включает в себя все миры вместе взятые. Таким образом, MМИ восстанавливает здравый смысл в физическом объяснении. Например, кажется очевидным, что для передачи информации из одного места в другое нам нужно посылать частицы (например фотоны) между этими двумя местами. Однако, как бы невероятно это ни звучало, квантовая механика позволяет посылать сигналы, общаться без частиц в канале передачи. Связь происходит только тогда, когда частицы не находятся в канале передачи. Достаточно того, что они могли быть там: вот почему такие протоколы называются «контрфактуальными» протоколами связи. Кроме того, современная космология «привыкла» к идее параллельных миров по причинам, не зависящим от квантовой механики (космическая инфляция и точная настройка космологических констант). Соответственно, нет особых причин считать нашу вселенную особенной, думая, что она единственная.
2022-01-28 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 25 января 2022 года представлена статья Вероники Бауманн и Флавио Дель Санто (Veronika Baumann, Flavio Del Santo) из Института квантовой оптики и квантовой информации в Вене, Венского университета (Австрия): «Многие Миры не имеют отношения к проблеме стрелы времени» («Many Worlds are irrelevant for the problem of the arrow of time»); (arXiv: 2201.10559). Отмечается, что в недавней статье Ш. Гао (http://philsci-archive.pitt.edu/19443/1/arrow2021.pdf, 2021), исходя из предположения, что начальное состояние Вселенной является чистым квантовым состоянием, утверждается, что интерпретация многих миров может объяснить наблюдаемую стрелу времени. По мнению авторов, хотя Гао удается перефразировать проблему «гипотезы прошлого» для MМИ, это, вопреки его утверждению, не является доказательством того, что теория многих миров эмпирически подтверждается нашим опытом стрелы времени. Указанное утверждение не только неверно, но авторы считают его «по своей сути проблематичным». Гао, на самом деле, «похоже, делает из этого более общие выводы», предполагая, что “помимо термодинамической стрелы времени, асимметрия вещества и антивещества может быть еще одним примером” “доказательств” для многих миров. Аргументация в пользу ММИ, основанная на нетипичности параметров нашей Вселенной, по мнению Вероники Бауманн и Флавио Дель Санто, несостоятельна и «по-видимому, наносит ущерб научным исследованиям».
2022-01-28 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что на сайте «philsci-archive» 15 августа 2021 года была представлена статья Шань Гао (Shan Gao) из Университета Шаньси (Китай): «Стрела времени указывает на множество миров» (Time’s arrow points to many worlds. http://philsci-archive.pitt.edu/19443/1/arrow2021.pdf, 2021). Констатируется, что широко распространено мнение, в соответствии с которым, энтропия ранней вселенной очень мала по сравнению с текущей энтропией (что соответствует наблюдаемой термодинамической стреле времени во Вселенной). Это мнение-предположение называют «гипотезой прошлого» (Альберт, 2000). Однако крайне низкое энтропийное состояние ранней Вселенной является такой же глубокой загадкой, как и стрела времени. Квантовые теории одного мира предсказывают, что наша вселенная типична, и она развивается из высокоамплитудной декогерентной ветви начальной универсальной волновой функции, которая имеет большой квадрат амплитуды. Многомировая интерпретация (MМИ) предсказывает, что наша Вселенная может быть нетипичной, и может развиться из низкоамплитудной декогерентной ветви начальной универсальной волновой функции, которая имеет очень малую квадратную амплитуду. Другими словами, в квантовых теориях с одним миром вероятность того, что наша Вселенная нетипична, близка к нулю, в то время как в MМИ эта вероятность может быть равна единице. Наблюдение за тем, является ли Вселенная типичной или нетипичной, может быть использовано для проверки подобных квантовых теорий. Автор утверждает, что «гипотеза прошлого» не является необходимой, и начальное состояние Вселенной может быть общей суперпозицией как низкоэнтропийных, так и высокоэнтропийных состояний. В этом случае наблюдаемая термодинамическая стрела времени является убедительным доказательством существования многих миров (ММИ). «Можно возразить», что наша Вселенная также может быть нетипичной, эволюционирующей из низкоамплитудной ветви начальной универсальной волновой функции в соответствии с квантовыми теориями единого мира, и поэтому приведенный выше анализ проблематичен. Однако квадрат низкоамплитудной декогерентной ветви настолько мал, что к этой ситуации, по мнению автора, применим «закон Бореля» (1962), который гласит, что события с достаточно малой вероятностью никогда не происходят. Кроме того, асимметрия вещества и антивещества в нашей Вселенной может быть еще одним примером «нетипичности» и , соответственно, верности ММИ. То есть, наблюдение асимметрии вещества и антивещества во Вселенной в наше время, также поддерживает MМИ, и «не понравится квантовым теориям единого мира». В конце статьи автор выносит благодарность Джеффу Барретту, Шону Кэрроллу, Дону Пейджу и Полу Таппендену за полезное обсуждение.
2022-01-24 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 20 января 2022 года представлена статья Оливера Фридриха, Ашмита Сингха, Оливье Доре (Oliver Friedrich, Ashmeet Singh, Olivier Doré) из Мюнхенского университета Людвига-Максимилиана (Германия), Кембриджского университета (Великобритания), Калифорнийского технологического института в Пасадене (США): «Инструментарий для скалярных полей во вселенных с конечно-мерным гильбертовым пространством» («Toolkit for scalar fields in universes with finite-dimensional Hilbert space»); (arXiv: 2201.08405). Авторы напоминают, что голографический принцип предполагает, что гильбертово пространство квантовой гравитации локально конечно-мерно. Руководствуясь этой точкой зрения и ее применением к наблюдаемой вселенной, они представили набор численных и концептуальных инструментов для описания скалярных полей с конечно-мерными гильбертовыми пространствами и изучения их поведения в космологии. Получен ряд нетривиальных вариантов моделирования, представленная общая структура может послужить отправной точкой для будущих исследований влияния конечно-мерности гильбертова пространства на физику в космологии. Кроме того, в статье предполагается, что в конечном счете, представления о пространственной и пространственно-временной симметрии могут быть эмерджентными феноменами базовой, чисто квантовой теории (“quantum first” program), в частности, в виде «реальности как вектора в Гильбертовом пространстве».
2022-01-19 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 16 января 2022 года представлена новая статья Саймона Сондерса (Simon Saunders): «Подсчет ветвей в интерпретации квантовой механики Эверетта» («Branch-counting in the Everett Interpretation of quantum mechanics»); (arXiv:2201.06087; Proceedings of the Royal Society A 477 (2021): 20210600). Предлагается защита версии правила подсчета ветвей для вероятности в интерпретации Эверетта (она же - ММИ квантовой механики). Новое правило подсчета ветвей основано на использовании теории декогеренции при определении ветвящейся структуры и, в частности, теории декогерентных историй. Правило находится в согласии с правилом Борна и дает представление об объективной вероятности, аналогичной «наивному частотизму», за исключением того, что частоты исходов не ограничиваются одним миром в разное время, а распространяются на миры в одно и то же время. По мнению автора, это идентично процедуре, которой следовали Планк, Бозе, Эйнштейн и Дирак при определении равновесного распределения газа Бозе-Эйнштейна и также простым способом связано с подходом к квантовой вероятности теории принятия решений.
2022-01-17 На канале YouTube 17 января выложена семнадцатая встреча из серии "Беседы об эвереттике" (https://youtu.be/OLl0DhHTJRc )
2022-01-17 Российский и американский философ, филолог, культуролог, литературовед, литературный критик, лингвист, эссеист М.Н.Эпштейн предлагает вниманию посетителей сайта МЦЭИ статью из его книги "Проективный словарь гуманитарных наук". М.Н.Эпштейн уже много лет разрабатывает философско-филологические аспекты многомировой парадигмы. В частности, именно он ввел в эвереттику термин «мультивидуум». Предлагаемая статья вводит новое эвереттическое понятие «диаверс» или «интерверс», используемое автором для уточнения антропного принципа.
2022-01-17 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 14 января 2022 года представлена объемная (110 стр., 173 ссылки на источники) статья Алирезы Таванфар, Алиасгары Парвизи, Марко Пеццутто (Alireza Tavanfar, Aliasghar Parvizi, Marco Pezzutto) из «Центра исследования неизвестного» Фонда Champalimaud в Лиссабоне (Португалия), Института неврологии Орегонского университета (США), Тегеранского университета, Института фундаментальных исследований в Тегеране (Иран), Люксембургского университета (Люксембург): «Унитарные Эволюции От Взаимодействующих Квантовых Воспоминаний: Замкнутые Квантовые Системы, Управляющие Собой, Используя Свои Истории Состояний» («Unitary Evolutions From Interacting Quantum Memories: Closed Quantum Systems Directing Themselves Using Their State Histories»); (arXiv: 2201.05583). Авторы исследуют замкнутые квантовые системы, чьи унитарные временные эволюции и взаимодействия возникают на основе взаимосвязанных «квантовых воспоминаний». Разрабатывается оригинальный общий тип квантовой динамики в виде «слияния немарковианства и унитарности»: эволюция квантовой системы - немарковская и унитарная (немарковский процесс — это случайный процесс с памятью). Такая динамика описывается нелокальными во времени нелинейными уравнениями фон Неймана и Шредингера. Исследуются внутренние связи между историей состояния и квантовой памятью системы (в частности, авторы дают ссылки на работы по запутанным историям Дж. Котлера и Ф. Вильчека (2016), М. Новаковского с соавт. (2018), Л. Кастеллани (2021)). Отмечается, что возможность явного доступа к прошлым состояниям системы потенциально может пролить больше света на связь между памятью в квантовой динамике и квантовыми корреляциями во времени. Рассматриваются не «сиюминутные» корреляции системы и окружающей среды, а временные корреляции «системы с самой собой». В обычном сценарии, когда эффекты памяти вызываются корреляциями системы и окружающей среды, окружающая среда играет роль посредника хранящего и передающего следы истории системы. В некотором смысле подход авторов более фундаментален, поскольку вместо этого они учитывают чисто внутренний источник квантовых воспоминаний: саму замкнутую квантовую систему. По мнению авторов, естественным многообещающим приложением их концепции, являются квантовые Интеллектуальные Системы, основанные на самоорганизации на основе истории состояния. Нет фундаментальных возражений против «интригующей возможности» того, что достаточно сложная и достаточно старая замкнутая квантовая система может развить некоторые виды или уровни самоорганизующегося разумного поведения.
2022-01-13 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в журнале Physical Review Letters 12 января опубликована статья Раффаэле Тито Д’Аньоло и Даниэле Терези (Raffaele Tito D’Agnolo and Daniele Teresi) из Университета Париж-Сакле (Франция) и ЦЕРНа в Женеве (Швейцария): «Естественность скольжения: Новое решение проблем сильной CP и электрослабой иерархии» («Sliding Naturalness: New Solution to the Strong-CP and Electroweak-Hierarchy Problems»); (Phys. Rev. Lett. 128, 021803 – Published 12 January 2022). Стандартная модель физики элементарных частиц точно описывает большинство сил и фундаментальных частиц нашей Вселенной. Однако стандартная модель не объясняет ускоряющееся расширение Вселенной; а масса бозона Хиггса, предсказанная этой моделью, как минимум втрое больше, чем полученная в экспериментах, что объясняется существованием мультивселенной. Предполагается, что в очень ранние времена истории нашей Вселенной существовало множество вселенных. Каждая вселенная содержала бозоны Хиггса с неоднородными массами: некоторые области каждой вселенной содержали тяжелый бозон Хиггса, в то время как другие содержали очень легкую его версию. Обнаружено, что области мультивселенной с большим Хиггсом были нестабильны и разрушались всего за 10−5 секунды. То есть в какой-то момент под действием темной энергии расширение Вселенной сменялось на резкое сжатие, и она «схлопывалась». Таким образом, по мнению авторов, осталась одна Вселенная - наша, содержащая очень легкий бозон Хиггса.
2022-01-12 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 11 января 2022 года представлена статья Аркадиуша Бохняка и Анджея Ситарза (Arkadiusz Bochniak, Andrzej Sitarz) из Ягеллонского университета в Кракове (Польша): «Спектральное взаимодействие между вселенными» («Spectral interaction between universes»); (arXiv: 2201.03839). Авторы исследуют прямое взаимодействие между двумя четырехмерными геометриями, такими как система из пары взаимодействующих Вселенных-бран. Задается вопрос о том, возможно ли, чтобы взаимодействия Вселенных имели чисто геометрическое происхождение. В частности, показана «простая модель некоммутативной геометрии», которая допускает взаимодействие между Вселенными-бранами и открывает возможность изучения общих свойств таких моделей. Предполагается, что в двух отдельных вселенных допустимы разные метрики. В конце статьи утверждается, что существует естественное, каноническое геометрическое взаимодействие между двумя соседними геометриями. Открытым остается вопрос о том, каковы физические последствия таких взаимодействий и какое влияние они оказывают на космологию (взаимодействия между двумя метриками приводят к интересному классу космологических моделей, которые кажутся жизнеспособными и могут использоваться для изучения стабильности моделей взаимодействующих Вселенных).
2022-01-04 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов прислал «Дополнение №5 к представленному на сайте МЦЭИ 22 декабря 2021 года реферату статьи Майкла Ридли (Michael Ridley); (Израиль): «Квантовая вероятность из причинной структуры» («Quantum probability from causal structure»); (arXiv: 2112.10929)». Дополнение касается следующего утверждения Майкла Ридли: «…причинно-следственная структура квантовой механики Келдыша включается в универсальную волновую функцию и локальные во времени события моделируются в терминах граничных условий "фиксированной точки"».
2022-01-04 На личной странице ведущего научного сотрудника МЦЭИ А.М.Костерина (https://everettica.org/member.php3?m=kost ) опубликованы «Комментарии к “Началу бесконечности” Д.Дойча». Публикация, в которой, как пишет автор, «приведено моё мнение о выборочных положениях этой книги. В приложении я привожу свои представления о выборе реальности сознанием и об антропоцентризме», предназначена для обсуждения на предстоящей «Беседе об эвереттике».
2022-01-01 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов прислал «Дополнение №4 к представленному на сайте МЦЭИ 22 декабря 2021 года реферату статьи Майкла Ридли (Michael Ridley); (Израиль): «Квантовая вероятность из причинной структуры» («Quantum probability from causal structure»); (arXiv: 2112.10929)»:
2022-01-01 Ведущий научный сотрудник МЦЭИ, д. ф.-м.н Л.В.Ильичёв представил публикацию своей работы с соавторами из Новосибирского Государственного Университета Шепелиным А.В., Ростом А.М. и Томилиным В.А. «Многомировые мотивы по замкнутым временным кривым» (A.V. Shepelin, A.M. Rostom, V.A. Tomilin and L.V. Il’ichov, «Multiworld motives by closed time-like curves», J.Phys.Conf._Ser._2081_012029, https://docs.yandex.ru/docs/view?url=ya-mail%3A%2F%2F178173660257913169%2F1.2&name=Shepelin_2021_J._Phys.__Conf._Ser._2081_012029.pdf&uid=11664966 ).
2022-01-01 Российский и американский философ, филолог, культуролог, литературовед, литературный критик, лингвист, эссеист М.Н.Эпштейн предлагает вниманию посетителей сайта МЦЭИ статью из его книги "Проективный словарь гуманитарных наук". М.Н.Эпштейн уже много лет разрабатывает философско-филологические аспекты многомировой парадигмы. В частности, именно он ввел в эвереттику термин «мультивидуум». Предлагаемая статья вводит новое эвереттическое понятие «диаверс» или «интерверс», используемое автором для уточнения антропного принципа.
2021-12-26 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов представил Дополнение №3 к опубликованному 21 декабря 2021 года реферату статьи Майкла Ридли (Michael Ridley) из Тель-Авивского университета (Израиль): «Квантовая вероятность из причинной структуры» («Quantum probability from causal structure»); (arXiv: 2112.10929).
2021-12-22 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 21 декабря 2021 года представлена статья Майкла Ридли (Michael Ridley) из Тель-Авивского университета (Израиль): «Квантовая вероятность из причинной структуры» («Quantum probability from causal structure»); (arXiv: 2112.10929). По мнению автора, мы можем превратить причинно-следственные процессы в обратном времени в центральную особенность теории, подразумеваемую в унитарной эволюции состояний. В 1964 году Ааронов с соавт. опубликовали симметричный во времени векторный формализм с двумя состояниями (TSVF), описывающий вероятности измерений, расположенных между предварительной и пост-селекцией, с помощью метода Ааронова-Бергмана-Лебовица (ABL). Автор считает, что экспериментальный успех TSVF, различные явно симметричные по времени формулировки и недавние демонстрации неопределенного причинно-следственного порядка свидетельствуют о более сложной причинно-следственной структуре в природе, чем может предложить один параметр фонового времени. По совпадению, в 1964 году Келдыш опубликовал другой симметричный во времени формализм. Результирующая теория неравновесной функции Грина (NEGF) описывает распространение корреляционных функций вдоль временного контура, состоящего как из прямых, так и обратных временных ветвей. В статье используется логическая эквивалентность между этими симметричными во времени формализмами. Полная причинно-следственная структура квантовой механики Келдыша включается в универсальную волновую функцию и моделируются локальные во времени события в терминах граничных условий "фиксированной точки". Автор называет предлагаемую версию квантовой механики формой фиксированной точки (FPF). Таким образом, версия квантовой механики - «форма фиксированной точки» (FPF) поддерживает эвереттовскую интерпретацию квантовой теории с оговоркой, что разветвление волновой функции допускается в обоих направлениях времени. Другой кандидат в симметричную во времени квантовую теорию - TSVF - опускает важную информацию, которая содержится в полной временной структуре Келдыша. А это - причинная структура, которая объясняет возникновение квантовой вероятности.
2021-12-21 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 19 декабря 2021 года представлена статья Джеймса Хартла (James Hartle) - эмерит-профессора Калифорнийского университета в Санта-Барбаре и сотрудника Института Санта-Фе в Нью-Мексико (США): «Каковы реалии» («What are the Realities»); (arXiv: 2112.10282). Вопрос о том, что реально, хорошо знаком физикам. В данной статье этот вопрос рассматривается через понятия реальности в моделях мира (схемах), которые создаются системами сбора и использования информации (Information Gathering and Utilizing Systems «IGUS» - «ИГУСах») во Вселенной. Термин IGUS был введен автором и покойным Мюрреем Гелл-Манном в совместной работе по пониманию применения квантовой теории к замкнутым системам, какой могла бы быть наша Вселенная. "Наблюдатели" и "измерения" не могли быть центральными в квантовой теории ранней Вселенной, где не существовало ни того, ни другого. Таким образом, сущностный смысл понятия ИГУС – это введение нижней временнóй границы применимости квантовой механики к описанию эволюции Универса.
2021-12-20 Ведущий научный сотрудник МЦЭИ А.М.Костерин опубликовал тезисы своего анализа итоговой в этом году видеоконференции «Беседы об эвереттике» (https://proza.ru/2021/12/20/613):
2021-12-17 В "Библиотеке" (https://everettica.org/member.php3?mode=1&m=out) выставлено философское эссе Ю.Помазного "Начала. Часть 1: тон" ("Ошибка природы: как человек изобрёл мелодию") с комментарием Ю.Лебедева (https://disk.yandex.ru/i/5j6FjYTCLkrMpw). Обсуждаемая тема - онтология феномена "ощущение" на примере сущности музыкального понятия "тон". По мнению комментатора,предложенная автором философская трактовка феномена "ощущение" является хорошим примером, демонстрирующим проявление эвереттического понятия "соотнесённое состояние" при осмыслении музыкальных сущностей.
2021-12-17 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 16 декабря 2021 года представлена статья Майкла Р. Геллера (Michael R. Geller) из Университета Джорджии в Афинах (США): «Вселенная как нелинейное квантовое моделирование» («The universe as a nonlinear quantum simulation»); (arXiv: 2112.09005). Автор исследует модель нелинейной эволюции кубитов. Он предполагает, что, возможно, не существует четкого различия между вселенными, развивающимися в соответствии с линейной и нелинейной квантовой механикой. В частности, "вселенная" с одним кубитом, подготовленная в чистом состоянии во время большого взрыва и симметрично связанная с n копиями, подготовленными в том же состоянии, будет, по-видимому, развиваться нелинейно в течение любого конечного времени до тех пор, пока существует экспоненциально много копий. Такая вселенная, по-видимому, поддерживает нелинейную квантовую эволюцию.
2021-12-15 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 13 декабря 2021 года представлена статья Мартина Грейтера (Martin Greiter) из Вюрцбургского университета (Германия): «Взаимосвязь и появление классической физики в квантовой теории» («Interlinking and the Emergence of Classical Physics in Quantum Theory»); (arXiv: 2112.07040). Предметом данной статьи является появление классической физики (когда появляется классическая реальность и статистическое описание нашего опыта) в квантовой теории, которая в значительной степени включает процесс измерения квантово-механических степеней свободы с помощью классических устройств. Автор вводит концепцию квантовой взаимосвязи и утверждает, что все макроскопические объекты во Вселенной связаны посредством связей взаимной запутанности... Уточняется, что такое квантовая взаимосвязь; представьте себе три (макроскопические) системы A, B и C и предположите, что A запутана с B, B запутана с C, но A и C не запутаны и не обмениваются взаимной информацией. Классически A и C настолько независимы, насколько это возможно. Однако в квантовой теории они взаимосвязаны, а это означает, что у нас не может быть полного описания A, которое также не описывает C, поскольку общая волновая функция, описывающая A, B и C, не может быть разложена на множители. ... если мы примем волновую функцию для Вселенной, она разложится на очень большое количество независимых волновых функций, описывающих микроскопические степени свободы, такие как электроны в заполненных оболочках, и одну единственную гигантскую волновую функцию, описывающую все взаимосвязанные макроскопические объекты. Это простое наблюдение «имеет далеко идущие последствия для интерпретации нашего классического опыта». Автор предполагает, что квантовая теория является фундаментальной теорией, эволюция которой, по крайней мере приблизительно, определяется уравнением Шредингера и его релятивистскими обобщениями. Классическая реальность, которую мы воспринимаем и описываем классическими теориями, задается ансамблем макроскопических объектов (АМО). Отличие данной модели от предыдущих теорий состоит в том, что вся энтропия интерпретируется как энтропия запутывания и принимается во внимание, что масштабы длины и энергии, соответствующие нелинейностям, которые предполагаются для описания коллапса волновых функций, в настоящее время для нас недоступны. Автор хочет примирить «интерпретации Множества Миров» (ММИ) с Копенгагенской интерпретацией. Он отмечает, что его фундаментальные предположения больше всего напоминают ММИ, а получаемая в результате феноменология, представляет собой усовершенствованную версию Копенгагенской интерпретации. «Несмотря на то, что нам не хватает микроскопической теории о том, как происходит коллапс в одной конкретной ветви наивно возникающего множества вселенных, разумно предположить, что это так». Фундаментальный вопрос, который «всегда интересовал» автора, заключается в том, существует ли в природе фундаментальная «сила» (или причина) направленная на развитие структур, и жизнь в частности; он считает, что его модель полезна для понимания этих вопросов.
2021-12-13 На канале YouTube 13.12.21 выложена шестнадцатая встреча из серии "Беседы об эвереттике" https://youtu.be/VvY6a6kG9SY .
2021-12-09 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 8 декабря 2021 года представлена статья Томмазо Фавалли и Аугусто Смерци (Tommaso Favalli, Augusto Smerzi) из QSTAR, INO-CNR и LENS во Флоренции и Университета Федерико II в Неаполе (Италия): «О мирном сосуществовании теплового равновесия и возникновении времени» («On the peaceful coexistence of thermal equilibrium and the emergence of time»); (arXiv:2112.04057). Авторы, рассматривают квантовую Вселенную, состоящую из небольшой системы S и большой среды, которой является ненаблюдаемая Вселенная (а именно, часть глобальной системы, которая находится за пределами светового конуса S). Ранее было высказано предположение о том, что наблюдаемая и ненаблюдаемая Вселенная могут быть перепутаны (запутаны). Поэтому «естественно предположить», что ненаблюдаемая Вселенная (которая больше, чем Вселенная наблюдаемая) действует как часы для наблюдаемой Вселенной. Недавние наблюдения за космическим микроволновым фоном вместе с инфляционной парадигмой указывают на то, что в начале космической инфляции Вселенная находилась в чистом состоянии с сильно коррелированными квантовыми флуктуациями. Временная динамика возникает при рассмотрении соотнесенных состояний S («в смысле Эверетта») по отношению к состояниям окружающей среды. Таким образом, по мнению авторов, решается парадокс мирного сосуществования статистической равновесной и неравновесной динамики. С точки зрения эвереттики важно, что в построениях авторов «соотнесенные состояния» «в смысле Эверетта» используются как надежная, не требующая отдельного обоснования конструкция.
2021-12-08 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что на ютубе 04 декабря 2021г. появился новый видеоролик с беседой Сергея Переслегина:
2021-12-07 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 2 декабря 2021 года представлена статья Салмана Саджада Вани, Джеймса К. Квача, Мира Файзала (Salman Sajad Wani, James Q. Quach, Mir Faizal) из Стамбульского технического университета (Турция), Канадского центра квантовых исследований в Британской Колумбии (Канада), Университета Аделаиды (Австралия), Университета Британской Колумбии (Канада), Университета Летбриджа (Канада), Тартуского университета (Эстония) «Квантово-информационный подход к проблеме времени» («A Quantum Informational Approach to the Problem of Time»); (arXiv:2112.00918). Авторы, используют квантовую теорию информации и новые подходы для решения проблемы времени и развития собственной оригинальной модели (см. «Дискретность времени в эволюции Вселенной»; Int.J.Mod.Phys. A32 (2017), 1750049; arXiv:1411.5675v2). Используется «деформированное» уравнение Уилера-Девитта (уравнение математически объединяет идеи квантовой механики и общей теории относительности) в «приближении минисуперпространства». Отмечается, что эта деформация может быть использована для решения проблемы времени. Дело в том, что в представленной модели Вселенная развивается не непрерывно, а дискретными скачками. В такой Вселенной существуют конечные расширяющиеся пузырьки, каждый из которых представляет точку в ее эволюции. Эти пузырьки появляются и исчезают через некоторый интервал времени, и, таким образом, придают времени дискретную структуру, образуя временные кристаллы, что и может быть эффективно использовано для решения проблемы времени в космологии. Образование временных кристаллов в уравнении Уилера-Девитта возникает из-за сочетания граничных условий и деформации уравнения Уилера-Девитта, когда Вселенная эффективно действует как временной кристалл, что соответствует созданию волновой функции Вселенной из ничего и ее последующему уничтожению в ничто. Такая картина согласуется с предсказаниями петлевой квантовой гравитации, в которой показано, что за эпохой ускоренного расширения Вселенной следует эпоха сжатия. Вселенные могут создаваться и уничтожаться. Демонстрируется, что временные космологические кристаллы могут образовываться из-за квантовых гравитационных эффектов. Несмотря на то, что для временных кристаллов существуют определенные теоремы запрета квантовой механики («no-go theorems»), показывается, что эти теоремы к квантовым космологическим временным кристаллам не применимы.
2021-11-30 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 29 ноября 2021 года представлена новая статья Овидиу Кристинел Стойка (Ovidiu Cristinel Stoica) из Национального института физики и ядерной инженерии в Бухаресте (Румыния): «Почему волновая функция уже является объектом в пространстве» («Why the wavefunction already is an object on space»); (arXiv:2111.14604). Автор отмечает, что с момента открытия квантовой механики тот факт, что волновая функция определяется в 3n-мерном конфигурационном пространстве, а не в 3-мерном пространстве, многим, включая Шредингера, Лоренца и Эйнштейна, казался сверхъестественным. Даже сегодня это по-прежнему рассматривается как важная проблема для основ квантовой механики. В статье развиваются взгляды автора на то, что волновая функция является подлинным объектом в пространстве. Хотя это может показаться удивительным, волновая функция не обладает качественно новыми свойствами, которые ранее не встречались в объектах, известных из евклидовой геометрии и классической физики. Утверждается, что «подавляюшая эмпирическая поддержка» показывает, что волновая функция является объектом в пространстве, что согласуется, в частности, с интерпретацией квантовой механики Эверетта.
2021-11-24 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 22 ноября 2021 года размещена статья Дель Раджана (Del Rajan) из Новой Зеландии: «Квантовая инверсия времени для предотвращения DDoS-атак: потенциально реализуемая технология TENET» («Quantum time inversion to prevent DDoS attacks: A potentially realizable TENET technology»); (arXiv:2111.11867). Квантовая информация обладает удивительной способностью выполнять информационные задачи, которые было бы невозможно или очень трудно выполнить только с классической информацией. Главной целью квантовой информатики является изучение новых аспектов этой информации и разработка с ее помощью полезных технологий. Разработке одной из таких технологий и посвящена данная статья. Эффект, известный как инверсия времени, был введен в современный научно-фантастический фильм Кристофера Нолана «Довод» (англ. Tenet— «Принцип»), и автор показывает, что такой временной эффект существует для квантовой информации. В частности, этот эффект может быть обнаружен в эксперименте, который генерирует фотоны, запутанные во времени. Предложена технология обнаружения DDoS для квантовых сетей, используящая эффект временной инверсии для квантовой информации. По мнению автора, существуют три возможности для более глубокого понимания запутанности во времени.
2021-11-24 На канале YouTube 21 ноября выложена пятнадцатая встреча из серии "Беседы об эвереттике". (https://www.youtube.com/watch?v=1U6TLK_OjcY ) Участники встречи: Олег Валерианович Теряев – доктор физико-математических наук, начальник отдела в Объединенном Институте ядерных исследований (Дубна), Александр Юрьевич Каменщик – доктор физико-математических наук, профессор Болонского университета, Юрий Александрович Лебедев - кандидат технических наук, доцент, литератор, автор 7 монографий об эвереттике и эвереттической истории, Павел Рафаэлович Амнуэль – кандидат физико-математических наук, астрофизик, писатель, Юрий Викторович Никонов – ведущий научный сотрудник Международного Центра эвереттических исследований (МЦЭИ), врач-психиатр, Аркадий Михайлович Костерин – ведущий научный сотрудник МЦЭИ, философ. На встрече, как обычно – новости эвереттической литературы (Ю. В. Никонов). В новостях – обзор работ по эвереттической тематике, опубликованных в научной литературе за время, прошедшее после предыдущей встречи. Предмет дискуссии: Кристалл времени и многомирие. Новый физический объект – темпоральный кристалл, предсказанный нобелевским лауреатом Ф.Вильчеком и уже демонстрирующий некоторые свои свойства в специальных экспериментах, может оказаться проявлением структурообразующего принципа в мультиверсе.
2021-11-23 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 22 ноября 2021 года размещена статья Юнь-Хао Ши с соавт. (Yun-Hao Shi et al.) из Института физики Китайской академии наук в Пекине, Университета Китайской академии наук в Пекине, Тяньцзиньского университета, Северо-Западного университета в Сиане, Исследовательской лаборатории в Дунгуане (Китай), Лаборатории теоретической квантовой физики, кластера новаторских исследований RIKEN, в Вако-ши (Япония): «Черная дыра на кристалле: излучение Хокинга и искривленное пространство-время в сверхпроводящей квантовой цепи с перестраиваемыми соединителями» («On-chip black hole: Hawking radiation and curved spacetime in a superconducting quantum circuit with tunable couplers»); (arXiv:2111.11092). Излучение Хокинга является одной из квантовых особенностей черной дыры, которую можно понимать как квантовое туннелирование через горизонт событий черной дыры, но непосредственно наблюдать излучение Хокинга астрофизической черной дыры довольно сложно. Рядом авторов проведены замечательные эксперименты с аналогами черных дыр на различных платформах. Однако, излучение Хокинга и его квантовая природа в виде запутанности, не были хорошо изучены из-за технических проблем с точным построением искривленного пространства-времени и точным измерением теплового спектра. Авторы статьи смоделировали искривленное пространство-время черной дыры на квантовом компьютере со сверхпроводящим процессором, состоящем из 10 кубитов «с перестраиваемыми соединителями» и изучали на этой модели излучение Хокинга. Они ожидают, что их результаты простимулируют дальнейший интерес к изучению черных дыр и связанных с ними проблем. Более продвинутый процессор с большим количеством кубитов может обеспечить более точные данные.
2021-11-17 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 12 сентября 2019 года была представлена статья Дайсуке Есида и Дзиро Сода (Daisuke Yoshida, Jiro Soda) из Университета Кобе (Япония): «Рождение Вселенной де Ситтера из кристалла времени» («Birth of de Sitter Universe from time crystal»); (arXiv:1909.05533; Phys. Rev. D 100, 123531. 2019). Авторы считают, что
2021-11-16 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 14 ноября 2021 года представлена статья Василия Евангелидиса (Basil Evangelidis) из Афинского университета (Греция) и Хагенского заочного университета (Германия): «Квантовая логика как обратимые вычисления» («Quantum logic as reversible computing») (arXiv:2111.07431). Отмечается, что основываясь на строгой обратимости законов микрофизики, Ландауэр (1961), Беннетт (1973), Приз (1976), Фредкин и Тоффоли (1982), Фейнман (1985) и другие представили обратимый компьютер, который не допускает никакой двусмысленности на обратных этапах вычисления, что делает обратимые вычисления (при отсутствии минимальных энергетических затрат) радикально отличными от вычислений обычных, необратимых. Отмечено, что основная идея построения универсального квантового компьютера состоит в том, чтобы использовать квантовый параллелизм, согласно которому две совершенно разные вещи должны рассматриваться как происходящие одновременно в квантовой линейной суперпозиции. Модель квантового компьютера кажется более понятной с помощью квантовой теории универсальной волновой функции (Эверетт, 1956), который позже принял форму многомировой интерпретации квантовой теории, воплощенной Девиттом (1970) со следующим предложением: “Может ли решением дилеммы индетерминизма быть вселенная, в которой действительно происходят все возможные результаты эксперимента?” Проекты квантовых обратимых вычислений, основанные на связи между информацией и энтропией, обещают энергосберегающие обратимые вычисления: обратимость физики означает, что мы никогда не сможем по-настоящему стереть информацию в компьютере. Всякий раз, когда мы перезаписываем часть информации новым значением, предыдущая информация может быть потеряна для всех
2021-11-13 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 17 октября 2019 года была представлена последняя, вторая редакция статьи Элизабет Гулд и Ниайеш Афшорди (Elizabeth Gould, Niayesh Afshordi) из Королевского университета в Кингстоне, Университета Ватерлоо, Института теоретической физики Периметр (Канада): «История повторяется? Космология периодического времени» («Does History Repeat Itself? Periodic Time Cosmology»); (arXiv: 1903.09694 v2; JCAP 09. 2019). Существует гипотеза, что космическая история может повторяться циклами с бесконечной серией подобных эонов в прошлом и будущем. Вместо этого авторы данной статьи предполагают, что космическая история в точности повторяется, создавая вселенную с периодической временной историей, которую они назвали периодической временной космологией. Сопоставляя Большой взрыв с бесконечным будущим с помощью конформного изменения масштаба (а-ля Пенроуз), они обнаружили, что такая модель может достаточно хорошо соответствовать наблюдениям. Причем, соответствие между историей Вселенной и начальными условиями обеспечивает жизнеспособное описание космологических наблюдений в контексте периодической космологии времени. Одно из предположений авторов состоит в том, что во Вселенной должны быть точные копии, и, следовательно, фрактальная структура. Возможно (но не гарантировано) найти сигнатуры этих повторяющихся повторно масштабированных структур в крупномасштабной структуре Вселенной. Одной из больших проблем с этим типом модели является рассмотрение второго закона термодинамики. Это может быть и не быть реальной проблемой, поскольку некоторые исследователи отмечают тот факт, что этот закон может применяться только в закрытой системе, а не при рассмотрении всей Вселенной. Например, наличие бесконечного пространства может препятствовать тому, чтобы соображения энтропии были актуальными (интересно, что авторы в этом контексте ссылаются на приватную консультацию с Барбуром (J. Barbour private communication). Оканчивается статья констатацией того, что многие вопросы все еще остаются нерешенными. Например, возможно ли, что все, что нам нужно для воссоздания нашего прошлого, — это переработать («recycle») наше будущее?
2021-11-12 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 29 октября 2021 года размещена статья Самуэля Баррозу Беллидо (Samuel Barroso Bellido) из Щецинского университета (Польша): «Влияние квантового или классического скалярного поля на энтропию запутанности Пары Вселенных» («Effects of a Quantum or Classical Scalar Field on the Entanglement Entropy of a Pair of Universes»), (arXiv: 2110.14736). По утверждению автора, совсем недавно был вычислен элемент пары вселенных, созданных в мультивселенной из вакуума (использовался формализм «третичного квантования в канонической квантовой гравитации»). Исследуются различия между рассмотрением скалярного поля как квантового или классического в контексте энтропии запутанности трех разных пар: вселенных Де-Ситтера, вселенных, в которых доминирует плоская жесткая материя и замкнутых вселенных со скалярным полем.
2021-11-09 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в в архиве электронных препринтов 08 ноября 2021 года представлена статья Михала Хайдушека, Парвиндера Соланки, Росарио Фацио, Сайя Винджанампати (Michal Hajdušek, Parvinder Solanki, Rosario Fazio, Sai Vinjanampathy) из университета Kэйо (Япония), Индийского технологического института в Бомбее (Индия), Международного центра теоретической физики в Триесте, Университета Федерико II в Неаполе (Италия), Национального университета Сингапура: «Затравочная кристаллизация во времени» («Seeding crystallization in time»); (arXiv:2111.04395). Кристаллическая структура и ее формирование являются одним из фундаментальных аспектов понимания твердого состояния. Способность центров зарождения («зародышей») инициировать кристаллизацию в растворенном веществе и ее роль в спонтанном нарушении пространственной симметрии давно оценены. Кристаллы времени (КВ) - это неравновесные фазы вещества с нарушенной симметрией переноса времени. Пространственную кристаллизацию можно ускорить путем внесения в пересыщенный раствор кристалликов растворенного вещества — «затравки», затравочного кристалла. Может ли нарушенная симметрия переноса времени затравочного кристалла вызвать кристаллизацию во времени аналогичным образом? Авторы отвечают на этот вопрос утвердительно и демонстрируют, что затравка кристаллизации во времени действительно не только возможна, но и при определенных условиях неизбежна. Причем, динамика ансамбля полученных с помощью затравочной кристаллизации связанных КВ дает некоторые эффекты, противоречащие базовым знаниям как классической, так и квантовой теории синхронизации.
2021-11-06 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в поисках ответа на вопрос, заданный в Новостях МЦЭИ от 4 ноября 2021 года: «…возможно ли моделирование космологического кристалла времени (КВ) …»? найдены любопытные материалы:
2021-11-04 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 28 июля 2021 года была представлена статья Сяо Ми с соавт. (Xiao Mi et al.) из Google Quantum AI and collaborators: «Наблюдение временного кристаллического порядка собственных состояний на квантовом процессоре» («Observation of Time-Crystalline Eigenstate Order on a Quantum Processor»); (arXiv:2107.13571). Работа привлекла внимание широкой публики (например, см.: Бен Тернер (Ben Turner). «Потусторонний "кристалл времени", созданный внутри квантового компьютера Google, может навсегда изменить физику» (Otherworldly “time crystal” made inside Google quantum computer could change physics forever». Live Science. September 14, 2021). Классическая и квантовая версии Кристалла Времени (КВ) вызвали огромный интерес уже через несколько лет после обоснования его теоретической возможности Шапером и Вильчеком и Вильчеком (2012). После критической оценки оригинальной квантовой версии произошли важные теоретические разработки квантового КВ с экспериментальными проверками. В данной статье продемонстрирована возможность проектирования неравновесных фаз вещества на квантовом процессоре, обеспечивающая прямое экспериментальное наблюдение КВ; используя кубиты внутри ядра квантового процессора Google Sycamore, создан кристалл дискретного времени (КВ).
2021-11-02 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 28 октября 2021 года представлена статья Виталия Ванчурина (Vitaly Vanchurin) из Национального центра биотехнологической информации в Мериленде и Дулутского института перспективных исследований в Миннесоте (США): «К теории квантовой гравитации на основе нейронных сетей» («Towards a theory of quantum gravity from neural networks»); (arXiv: 2111.00903). Квантовая механика — это четко определенная математическая структура, которая оказалась очень успешной для моделирования широкого спектра сложных явлений в физике высоких энергий и конденсированных сред, но она не дает никаких разумных объяснений такому простому явлению, как измерение, то есть проблеме измерения. По мнению автора, совершенно неясно, что на самом деле происходит с волновой функцией во время измерения и какую роль (если таковая имеется) наблюдатели играют в этом процессе. К сожалению, ни одна из современных интерпретаций квантовой механики не дает удовлетворительного ответа на вышеизложенное вопросы. Не существует ни одного самосогласованного и свободного от парадоксов определения макроскопических наблюдателей, которое могло бы описать, что на самом деле происходит с квантовым состоянием во время измерения или как назначать вероятности космологическим наблюдениям. Теперь ситуация меняется, у нас есть математическая структура нейронных сетей, которая может описать многие (если не все) биологические явления. Однако, остается вопрос: может ли теория нейронных сетей быть фундаментальной теорией, из которой возникают не только макроскопические наблюдатели или некоторые сложные явления, но и все биологические и физические явления? Если это так, то теории квантовой механики и общей теории относительности должны быть не фундаментальными, а эмерджентными (возникающими), что согласуется с «распространенным мнением» о том, что “время” имеет термодинамическое происхождение, но также предполагается, что “пространство” должно возникать в результате обучения нейронной сети. Автор показывает, что неравновесная динамика обучаемых переменных нейронных сетей может быть описана уравнением Шредингера, если обучающая система способна регулировать свои собственные параметры, такие как количество нейронов. Утверждается, что симметрия Лоренца и искривленное пространство-время могут возникнуть в результате взаимодействия между стохастическим производством энтропии и разрушением энтропии в результате обучения. Автор приходит к выводу, что квантовое описание обучаемых переменных и гравитационное описание необучаемых переменных дуальны в том смысле, что они предоставляют альтернативные макроскопические описания одного и того же - обучающей системы, микроскопически определяемой как нейронная сеть.
2021-11-02 На канале YouTube 1 ноября выложена четырнадцатая встреча из серии "Беседы об эвереттике". (https://www.youtube.com/watch?v=1c_FEpUqHbA ) Участники встречи: Олег Валерианович Теряев – доктор физико-математических наук, начальник отдела в Объединенном Институте ядерных исследований (Дубна), Юрий Александрович Лебедев - кандидат технических наук, доцент, литератор, автор 7 монографий об эвереттике и эвереттической истории, Павел Рафаэлович Амнуэль – кандидат физико-математических наук, астрофизик, писатель, Юрий Викторович Никонов – ведущий научный сотрудник Международного Центра эвереттических исследований (МЦЭИ), врач-психиатр, Аркадий Михайлович Костерин – ведущий научный сотрудник МЦЭИ, философ. На встрече, как обычно – новости эвереттической литературы (Ю. В. Никонов). В новостях – обзор работ по эвереттической тематике, опубликованных в научной литературе за время, прошедшее после предыдущей встречи. Предмет дискуссии: антропный принцип и многомирие: история вопроса. Идеи Эдгара По, Клаузиуса, Больцмана, Дирака, Дикке и других ученых. Странные безразмерные числа – комбинации мировых постоянных. Есть ли в нашей Вселенной другие цивилизации? Происхождение жизни и мультивселенная.
2021-11-01 В выпуске №402 «Обзоров препринтов astro-ph» на сайте «Новости астрономии от профессионалов: обзоры препринтов» https://mail.yandex.ru/?uid=11664966#message/177610710304489560 С.Б.Попов приводит реферат публикации Даниэля Оринити (Daniele Oriti) «Сложное безвременнОе возникновение времени в квантовой гравитации (The complex timeless emergence of time in quantum gravity)» (arxiv:2110.08641 ): «Благодаря статьям и книгам Карло Ровелли многие знакомы с идеей, что время не является фундаментальной величиной. В петлевой квантовой гравитации время возникает из более фундаментальных сущностей (Орити дает понятную аналогию: давление или вязкость - не фундаментальные величины, т.к. можно описывать движение газов и жидкостей на более фундаментальном уровне квантово-механического описания, но для сплошных сред это просто неудобно). В данной статье автор достаточно понятно и подробно (мне даже больше нравится, чем Ровелли) поясняет эту мысль для широкого круга интересующихся».
2021-10-26 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 24 октября 2021 года представлена работа Ю-Цин Цуй, Тянь-Мин Чжао, Жун-Синь Мяо, Цзинь-Дон Ван, Хуанян Чен (Yu-Qing Cui, Tian-Ming Zhao, Rong-Xin Miao, Jin-Dong Wang, Huanyang Chen) из Южно-китайского педагогического университет в Гуанчжоу, Университета Сунь Ятсена (Чжуншань), Сямэньского университета (Китай): «Состояние кота Шредингера оптических параллельных вселенных» («Schrödinger’s cat state of optical parallel universes»); (arXiv: 2110.12438). Авторы считают, что параллельные миры — это интригующие и творческие идеи в квантовой механике и космологии, которые также являются популярными темами научной фантастики. Существует несколько различных видов параллельных миров. Самые известные из них - многомировая интерпретация квантовой механики (ММИ), которая предполагает, что все результаты, которые могут произойти, действительно происходят, но в каждой вселенной может произойти только один результат. Второй вид параллельных миров — это мультивселенная вечной инфляции, где пространство разбито на бесконечные причинно несвязанные пузырьковые вселенные. Интересно, что предполагается, что многие миры ММИ и многие миры мультивселенной эквивалентны. Таким образом, интересно изучить оптическую аналогию параллельных миров, которую гораздо легче реализовать в экспериментах и которая может пролить некоторый свет на обнаружение параллельных вселенных в реальном мире. Благодаря быстрому развитию метаматериалов и трансформационной оптики в лаборатории возможно оптическое имитирование новых пространств-времен, таких как черные дыры, червоточины (они же кротовые норы), вселенные де Ситтера, мультивселенные и другие геометрии. Однако, поскольку метаматериалы являются классическими объектами, эти работы могут только имитировать классические пространства-времена. Авторы исследуют квантовые эффекты: суперпозицию или состояние кота Шредингера оптических параллельных миров. Суперпозиции параллельных миров являются новыми состояниями квантовой гравитации и, как правило, не имеют классических соответствий. Предложены две реализуемые экспериментальные схемы, которые позволяют исследовать "параллельные вселенные" с помощью интерферометра Маха-Цендера. Первый способ основан на атомном ансамбле в состоянии суперпозиции, которое является состоянием кота Шредингера. Второй - заключается в подготовке фотона в суперпозиции различных путей, где каждый путь лежит в оптической параллельной вселенной. По мнению авторов, основные идеи их статьи можно «обобщить на интерференцию Хонг-Оу-Манделя» («Hong-Ou-Mandel effect» - эффект двухфотонной интерференции в квантовой оптике), которая может выявить квантовую запутанность между оптическими параллельными мирами, и на акустическую систему, такую как конденсация Бозе-Эйнштейна. Кроме того, по мнению авторов, их работа также может помочь изучить квантовый эффект "гравитационных волн" в оптических вселенных.
2021-10-25 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 22 октября 2021 года представлена статья Эдди Кеминга Чена (Eddy Keming Chen) из Калифорнийского университета в Сан-Диего (США): «Космическая пустота» («The Cosmic Void»); (arXiv:2110.11859; Сара Бернштейн и Тайрон Гольдшмидт (ред.) (Sara Bernstein and Tyron Goldschmidt), «Небытие: Новые эссе о метафизике Небытия» («Non-Being: New Essays on the Metaphysics of Nonexistence»); Oxford University Press, 2021. 18 марта 2021 года). Один из самых сложных вопросов фундаментальной физики и фундаментальной метафизики: что существует на фундаментальном уровне реальности? Предлагается сценарий «космической пустоты», в котором на самом фундаментальном уровне существуют только фундаментальные законы природы и никакой материальной онтологии (такой как частицы, поля или квантовые состояния), которая выводится из законов природы на «неосновном» уровне. По мнению автора, возможность реализации такой концепции тесно связана с существованием-несуществованием сильного детерминизма. Один из способов, которым фундаментальные законы природы могут обеспечивать сильный детерминизм, — это выполнение двух условий: 1) законы детерминистичны; 2) законы выбирают уникальные начальные условия Вселенной (понятие сильного детерминизма введено в (Пенроуз 1989), что отличается от понятия “сверхдетерминизма”, которое иногда используется в контексте избегания нелокальности Белла (см. Chen, 2020a)). Обсуждается конкретный пример сценария «космической пустоты», который возникает в рамках «сильно детерминированной версии» многомировой теории квантовой механики Эверетта в асимметричной во времени вселенной. Интересны рассуждения автора о двух типах законов физики: недетерминистичных и детерминистичных. Если законы являются недетерминистичными, то в какой-то момент (или некоторый промежуток времени), законы могут допускать множество различных прошлых и будущих событий Вселенной. Другими словами, разные истории могут пересекаться и расходиться позже (то есть описаны эвереттические склейки). Если законы детерминистичны, то, в некоторый момент времени (или в некоторый отрезок времени), законы допускают только одно прошлое и одно будущее Вселенной. Другими словами, различные истории Вселенной не могут пересекаться ни в какой момент времени. Мир сильно детерминирован, если его фундаментальные законы определяют уникальную историю Вселенной. Автор представил нестандартную картину физической вселенной, сценарий космической пустоты не для того, чтобы безусловно одобрить его, а чтобы привлечь внимание к интересной области логического пространства, которая заслуживает более пристального внимания.
2021-10-25 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 19 октября 2021 года представлена работа Карла Свозила (Karl Svozil) из Венского технического университета (Австрия): «Многомерность» («Interdimensionality»); (arXiv:2110.11394). В статье автор отмечает, что его соображения выходят далеко за рамки любой эмпирически проверяемой физики нашего времени; и все же, по крайней мере, некоторые из них могут указать путь к плодотворным направлениям научного моделирования. В этом, со слов самого автора, спекулятивном анализе, многомерность вводится как (совместное) существование - сосуществование вселенных, встроенных в более крупные образования. Возможно сосуществование частей или фрагментов «внешнего» фрактального пространства с «более высокой» внешней хаусдорфовой размерностью и некоторой «внутренней» сущности субпространства, которая имеет «меньшую» или такую же внутреннюю размерность Хаусдорфа. «Встроенные» вселенные могут быть изолированы или переплетены. Предположительно, множество внутренних явлений в них могут быть поняты только в контексте внешней реальности. Описано гипотетическое межпространственное погружение, которое позволяет пересекать пространство через “прыжок” в другое измерение, тем самым создавая кратчайший путь между двумя пространственно-временными точками. В заключении автор делится некоторыми «спекулятивными мыслями». Например, все это можно сравнить с компьютерным моделированием, с интерфейсами между вселенными с переплетающимися областями. В этом контексте, с внешней, “божественной точки зрения” на космическое пространство нет проблемы согласованности, потому что эволюция, рассматриваемая с этой “глобальной” всеобъемлющей точки зрения, никогда не допускает несогласованных явлений. Причем, при взаимодействии «встроенных» вселенных не возникает никаких проблем и в отношении, в частности, временных парадоксов, поскольку в рамках защиты межпространственной хронологии любые соотнесенные пространственно-временные системы «встроены» во “внешнее” пространство, которое регулирует их феноменологию. Автор убежден, что для прогресса наука должна расширять и исследовать огромное разнообразие вариантов, даже если они кажутся далекими современному уму.
2021-10-22 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 10 октября 2021 года размещена статья Антонио Вассалло и Дэвида Романо (Antonio Vassallo, Davide Romano): «Метафизика декогеренции») из Варшавского технологического университета (Польша) и Лиссабонского университета (Португалия); (The metaphysics of decoherence»); (arXiv:2110.04786). В статье рассматриваются интерпретации квантовой механики: коллапсная, теория скрытых переменных Бома, многомировая Эверетта, кюбизм, квантовый дарвинизм; предлагается нестандартная, минималистическая интерпретация квантового формализма: «декогеренция без интерпретации». Утверждается, что такое прочтение декогеренции ведет к чрезвычайно радикальному типу «перспективного реализма», особенно когда рассматривается декогеренция в космологических моделях. В частности, рассматривается сильный вариант перспективизма, который является метафизическим тезисом, радикально отходящий от стандартного реализма: даже если существует независимая от разума реальность, такая реальность не является последовательным объединением объективных, то есть независимых от перспективы фактов. Это происходит потому, что факт “объективен” только по отношению к данной перспективе, что, в свою очередь, подразумевает, что не существует всеобъемлющей картины реальности (так сказать, “Божьего взгляда” на мир). Реальность — это больше, чем может охватить любая точка зрения от третьего лица. В заключении авторы утверждают, что квантовая механика и декогеренция все же нуждаются и в стандартной реалистической интерпретации, чтобы обеспечить связную историю физического мира, и, следовательно, необходимо принять «дополнительный багаж параллельных миров, скрытых переменных и объективных коллапсов». Они оставляют окончательный выбор интерпретации за читателем.
2021-10-21 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что американский астрофизик Ави Лёб (Avi Loeb) 15 октября 2021 года опубликовал в журнале Scientific American статью: «Была ли наша Вселенная создана в лаборатории?» («Was Our Universe Created in a Laboratory?»); https://www.scientificamerican.com/article/was-our-universe-created-in-a-laboratory/, в которой отмечается, что самая большая загадка, касающаяся истории нашей Вселенной, заключается в том, что произошло до большого взрыва; откуда взялась наша Вселенная? В научной литературе существует множество гипотез о нашем космическом происхождении, включая идеи о том, что наша Вселенная возникла из флуктуации вакуума, или что она циклична с повторяющимися периодами сжатия и расширения, или что она была выбрана антропным принципом из ландшафта теории струн Мультивселенной … Менее изученная возможность состоит в том, что наша Вселенная была создана в лаборатории развитой технологической цивилизации; развитая цивилизация могла бы разработать технологию, которая создала дочернюю вселенную из ничего с помощью квантового туннелирования. Эта возможная история происхождения объединяет религиозное представление о творце со светским представлением о квантовой гравитации. У нас нет предсказательной теории, которая объединяла бы квантовую механику и гравитацию; развитие технологий квантовой гравитации может поднять нас до уровня цивилизации «класса А», способной создать дочернюю вселенную (более развитая цивилизация могла бы уже совершить это и овладеть технологией создания дочерних вселенных). Если это так, то наша Вселенная была выбрана не для того, чтобы мы в ней существовали — как предполагают обычные антропные рассуждения, — а скорее для того, чтобы она дала начало цивилизациям, которые намного более развиты, чем мы. В этом случае Вселенная, подобная нашей, порождает новую плоскую вселенную, подобна биологической системе, которая поддерживает долговечность своего генетического материала в течение нескольких поколений.
2021-10-19 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 12 и 13 октября 2021 года представлены две статьи Сальвадора Дж. Роблес-Переса (Salvador J. Robles-Perez) из Университета Карлоса III в Мадриде (Испания):
2021-10-19 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 15 октября 2021 года представлена статья Люка А. Барнса (Luke A. Barnes) из Западного Сиднейского университета (Австралия): «Тонкая настройка Вселенной для Жизни» («The Fine-Tuning of the Universe for Life»); (arXiv:2110.07783). В работе рассматривается тонкая настройка Вселенной для жизни. Один из разделов статьи («Мультиверс»), посвящен спорным вопросам «проекта» Мультиверса-Мультивселенной. В частности, рассматривается проблема мозга Больцмана: «Мы не доктор Франкенштейн; мы и есть монстр. Мы проснулись в лаборатории и пытаемся понять, как это сделало нас. … откуда я могу знать, являюсь ли я мозгом Больцмана с ложными воспоминаниями?» Одна из ярких черт статуса наблюдателей - людей заключается в том, что мы формировались в течение долгого процесса последовательного увеличения энтропии: гравитационного коллапса галактик и звезд, горения звезд и сверхновых, формирования планет и биологической эволюции. В некоторых моделях мультивселенных большинство наблюдателей (мозги Больцмана) формируются в результате случайных статистических колебаний. Могут ли модели мультивселенной естественным образом избежать проблемы мозга Больцмана - вопрос открытый; см., среди многих других, Пейдж (Page; 2006); Линде (Linde; 2007); Банкс (Banks; 2007); де Симоне (de Simone et al.; 2010); Агирре, Кэрролл и Джонсон (Aguirre, Carroll & Johnson; 2011); Номура (Nomura; 2011); Бодди и Кэрролл (Boddy & Carroll; 2013); Альбрехт (Albrecht; 2015); Бодди, Кэрролл и Поллак (Boddy, Carroll & Pollack; 2015); Эллис и Силк (Ellis & Silk; 2014). Являются ли тесты теорий мультивселенной достаточными, чтобы сделать их научными? Ненаблюдаемые субвселенные сильно отличаются от ненаблюдаемых кварков…
2021-10-18 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 12 октября 2021 года представлена статья Идо Бен-Даяна, Мерава Хадада, Амира Михаэлиса (Ido Ben-Dayan, Merav Hadad, Amir Michaelis) из Университета Ариэля (Израиль), Калифорнийского университета в Беркли (США) и Открытого университета Израиля (Израиль): «Великая Каноническая Мультивселенная и Малая космологическая постоянная» («The Grand Canonical Multiverse and the Small Cosmological Constant») (arXiv: 2110.06249). Авторы рассматривают Мультивселенную как ансамбль вселенных. Отмечено, что поскольку вселенные в процессе эволюции и создаются, и уничтожаются, постольку количество вселенных и общая суммарная энергия не являются фиксированными. Используется стандартный анализ статистической физики, установлено, что в модели Космологическая постоянная (КП) экспоненциально мала. Причем, малая и конечная КП достигается без учета каких-либо антропных рассуждений. Применение квантования позволяет интерпретировать единую Вселенную как суперпозицию различных состояний с различными уровнями энергии. Кроме того, по мнению авторов, их подход открывает возможность рассматривать нашу Вселенную в связи с другими Вселенными и такими способами, как в сценариях Миров на Бране («Braneworld»), глобально или локально взаимодействующих. Отмечено, что «было бы интересно попробовать разработать такую модель и проверить ее».
2021-10-18 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 13 октября 2021 года представлена работа Бадис Идри (Badis Ydri) из Университета Аннабы (Алжир): «Теорема Белла: Мост между измерением и проблемой разума/тела»); («Bell’s theorem: A bridge between the measurement and the mind/body problems»); (arXiv: 2110.06927). Автор обсуждает теорему Белла, проблемы квантового измерения и «интерпретацию Ницше-Юнга-Паули». По его мнению, квантовый дуализм представляет собой очень сложную концепцию, в частности, включающую взаимодополняемость между наблюдателями от первого лица в Копенгагенской интерпретации, которые населяют Мир, и супернаблюдателями («super-observers») от третьего лица из многомировых наблюдателей, которые могут воспринимать квантовую Реальность как линейную суперпозицию «всех классических психофизических Реальностей». Согласно автору, существует реальное воздействие сознания / разума на материю (ментальная причинность). Иными словами: квантовая реальность рассматривается как i) физическая реальность, где переход от кванта к классике осуществляется посредством декогеренции, и как ii) квантовая линейная суперпозиция всех классических психофизических перспективных Реальностей, которые управляются синхронистично, а также причинно.
2021-10-11 На канале YouTube 11.10.21 выложена тринадцатая встреча из серии "Беседы об эвереттике".
2021-10-07 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 06 октября 2021 года размещена статья Барака Шошани и Джареда Вогана (Barak Shoshany, Jared Wogan) из университета Брока (Канада): «Машины времени с червоточинами и множественные истории» («Wormhole Time Machines and Multiple Histories»), (arXiv: 2110.02448). Цель статьи - определить и проанализировать новую модель парадоксов путешествий во времени, которая полностью совместима со всей известной физикой - при условии, конечно, что само путешествие во времени возможно. Эта модель состоит из червоточины (кротовой норы)-машины времени в пространственно-временном измерении 3 + 1, которая может быть постоянной (существующей вечно) или временной (активированной только на короткое время). Авторы определяют топологию пространства-времени и геометрию модели, и доказывают, что эта модель неизбежно приводит к парадоксам, которые могут быть разрешены с использованием нескольких историй. Этот результат обеспечивает более существенное подтверждение утверждению авторов (2019) о том, что путешествие во времени обязательно подразумевает множественные истории. В будущем было бы интересно построить модели парадоксов путешествий во времени, которые не вовлекают червоточины. Такие модели могут быть основаны на других предлагаемых формах путешествий со скоростью, превышающей скорость света. такие как варп-двигатели или гиперпространство.
2021-10-06 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 6 октября 2021 года представлена статья Хитоси Инамори
2021-10-04 В «Библиотеке» выставлена заметка О.В.Теряева «Комментарий об оценке числа вселенных в мульти(альтер)версе https://disk.yandex.ru/i/ovzJDyzJgkOq7A . Обсуждается оценка числа вселенных в ММИ, приведённая в статье A.Yu. Kamenshchik, O.V. Teryaev «Many-worlds interpretation of quantum theory, mesoscopic anthropic principle and biological evolution» ArXiv: 1302.5545v1 22 февраля 2013, (перевод П.Р.Амнуэля «Многомировая интерпретация квантовой теории, мезоскопический антропный принцип и биологическая эволюция» https://disk.yandex.ru/i/_RAE5ByiayFBWw ). Утверждается, что числовой фактор ~10^122 возникает как при оценке действия Вселенной, так и её энтропии.
2021-10-02 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщил, что в архиве электронных препринтов 28 сентября 2021 года представлена статья Ахмета Чевика и Зеки Сескира (Ahmet Çevik, Zeki Seskir) из Академии жандармерии и береговой охраны и Ближневосточного технического университета (Анкара,Турция): «О мощности возможных миров в дискретных пространственно-временных структурах» («On the Cardinality of Possible Worlds in Discrete Spacetime Structures») (arXiv: 2109.14042). Авторы «попытались исследовать» взаимосвязь между много-мировой интерпретацией квантовой механики (ММИ) и количеством возможных миров при различных обстоятельствах. Начали с определения того, что такое «событие» по отношению к данной интерпретации пространства-времени, и показали, как на этой основе можно строить мировые линии. Использовались некоторые известные топологические свойства пространства Кантора. В соответствии с гипотезой дискретности пространства-времени получены некоторые результаты с помощью, конечных ветвящихся деревьев, содержащих все возможные мировые линии в виде бесконечных путей (независимо от того, существует ли начальное событие (например, Большой взрыв) или нет, то есть вселенная существует вечно). В MМИ квантовой механики существуют все возможные вселенные со всеми возможными конфигурациями. Вселенные без начала, вселенные с одним началом, вселенные без конца или с несколькими вариантами окончания существования, вечные вселенные, вселенные без начала, но которые когда-либо закончатся, и так далее. В частности, обсуждается счетное число вселенных с различными свойствами. …
2021-09-29 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 28 сентября 2021 года представлена статья Виктора Александровича Березина и Вячеслава Ивановича Докучаева (Victor A. Berezin, Vyacheslav I. Dokuchaev) из Института ядерных исследований РАН, Москва (Россия): «Супервизор Вселенной» («Supervisor of the Universe») (arXiv: 2109.13544). В статье, вслед за Роджером Пенроузом и Герардом т’Хоофтом, предполагается, что Вселенная является конформно инвариантной и что описывается геометрией Вейля (обобщением римановой геометрии). Герард т’Хоофт (2015) предположил, что разные наблюдатели могут видеть разные картины, т.е. разные геометрии.
2021-09-28 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 24 сентября 2021 года представлена статья В. Виласини и Роджера Колбека (V. Vilasini, Roger Colbeck) из Института теоретической физики ETH в Цюрихе (Швейцария) и Йоркского университета (Англия): «Возможность причинно-следственных связей без сверхсветовой сигнализации - общая структура» («Possibility of causal loops without superluminal signalling - a general framework») (arXiv:2109.12128). Отмечено, что причинно-следственная связь проявляется в нескольких различных формах. Одна из них - релятивистская причинность, которая привязана к пространственно-временной структуре и запрещает передачу сигналов «за пределами будущего». С другой стороны, причинно-следственная связь может быть определена операционально путем рассмотрения потока информации в сети физических систем и воздействий на них. Авторы разрабатывают такую общую структуру, которая позволяет независимо определять эти различные понятия причинно-следственной связи. Демонстрируется математическая возможность иметь такие кривые в пространстве-времени Минковского, что их существование может быть оперативно обнаружено без использования сверхсветовой сигнализации. В частности, анализируются свойства замкнутых временно-подобных кривых (ЗВК), которые логически непротиворечивы и не приводят к парадоксам путешествий во времени (ЗВК Дойча (Д-ЗВК) и пост-селективные ЗВК (П-ЗВК), которые обладают разной вычислительной мощностью и обеспечивают разные разрешения парадокса дедушки (он же парадокс убитого дедушки). В рамках концепции авторов парадоксы такого типа запрещены предположением о существовании допустимого совместного распределения вероятностей наблюдаемых переменных. Отмечено, что примечательным подходом для исследования причинно-следственной связи в симметричных во времени формулировках квантовой теории является векторный формализм двух состояний, который описывает измерения до и после выбора квантовых состояний. Авторы считают, что заслуживает дальнейшего изучения, как этот симметричный по времени подход может быть смоделирован в причинно-следственной структуре.
2021-09-27 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 27 сентября 2021 года представлена статья Кристофера Вайрогса, Вишала Катария, Марка М. Уайлда (Christopher Vairogs, Vishal Katariya, Mark M. Wilde) из Университета Флориды в Гейнсвилле и Университета штата Луизиана в Батон-Руж (США): «Схемы квантовой дискриминации состояний, вдохновленные замкнутыми времени-подобными кривыми Дойча» («Quantum State Discrimination Circuits Inspired by Deutschian Closed Timelike Curves»); (arXiv: 2109.11549). Замкнутые времени-подобные кривые (ЗВК) возникают как решения уравнений поля Эйнштейна в общей теории относительности. Хотя существование ЗВК не подтверждено, они поднимают вопрос о возможности путешествий во времени и связанных с этим парадоксах. Одна из моделей ЗВК предложена Д. Дойчем (1991). Модель (много-мировая в широком смысле этого слова) имеет характеристики, выходящих за рамки того, что допускается стандартной квантовой механикой. Важно, что даже если Д-ЗВК недоступны, возможно имитировать эволюцию состояния системы, движущейся вдоль Д-ЗВК. Такое моделирование интересно не только потому, что оно позволяет лучше понять свойства Д-ЗВК, но и потому, что оно позволяет использовать их уникальные характеристики для приложений, в частности, авторы предлагают практический метод «распознавания нескольких неортогональных состояний» с использованием квантовой схемы, предназначенной для моделирования Д-ЗВК. Предложенный метод распознавания состояний может быть эквивалентно преобразован в локальную итеративную схему, которая поддается экспериментальной реализации.
2021-09-24 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 22 сентября 2021 года размещена статья Цзиньсянь Го, Цичжан Юань, Юань Ву, Вэйпин Чжан (Jinxian Guo1, Qizhang Yuan, Yuan Wu, Weiping Zhang) из Шахайского университета Цзяо Тун, Шанхайского нормального Университета, Восточно-Китайского педагогического университета, Шанхайского исследовательского центра квантовых наук, Университета Шаньси, Тайюань (Китай): «Стирание прошлого фотонов» («Erasing the past of photons»); (arXiv: 2109.10467). (Erasing (англ.) – стирать, подчищать, вычеркивать, соскабливать, изглаживать из памяти…). Констатируется, что прошлое квантовой частицы обсуждается десятилетиями; работами ряда авторов доказано, что фотоны могут «скрывать» свое прошлое, особенно в экспериментах на вложенном интерферометре Маха-Цандера (ВИМЦ); в частности, может быть скрыт и "слабый след" фотонов. То есть, мы не можем сделать определенный вывод о прошлом фотонов, потому что фотоны могут «скрывать» свое прошлое. В контексте ВИМЦ это явление обсуждалось Львом Вайдманом; этот контрфактуальный результат был объяснен через векторный формализм с двумя состояниями, вызвавший обширные теоретические дискуссии и экспериментальные демонстрации в последние годы.
2021-09-23 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 22 сентября 2021 года представлена статья Аурелиана Дрезе (А. Drezet) из университета Гренобль - Альпы (Франция) с броским названием: «Коллапс многомировой интерпретации: почему теория Эверетта обычно неверна» (Collapse of the many-worlds interpretation: Why Everett’s theory is typically wrong); (arXiv:2109.10646). Анализируется объективное значение вероятностей в контексте многомировой интерпретации Эверетта (ММИ); утверждается, что теория Эверетта не дает ключа к установлению правила вероятности и, следовательно, противоречит неопровержимым эмпирическим фактам и закону Борна. В тоже время автор считает, что его анализ дает подсказки и мотивацию для разработки других онтологий на основе ММИ. Отмечается «путь, по которому в настоящее время следует Вайдман», предложивший постулат Борна-Вайдмана; другой путь, при котором новые эволюционные уравнения «могут носить нелинейный характер». Наконец, А. Дрезе предлагает собственный вариант: «Осмысление правила Борна pα = ‖Ψα‖2 с интерпретацией множества умов». (Drezet, A.: «Making sense of Born’s rule pα = ‖Ψα‖2 with the many-minds interpretation». To appear in Quantum Studies: Mathematics and Foundations. 2021; https://inspirehep.net/literature/1832571. Появится в журнале Quantum Studies: Mathematics and Foundations. 2021). Эта работа представляет собой попытку обосновать правило Борна в рамках ММИ. Разрабатывается унитарная модель множественных умов, основанная на работе Альберта и Лёвера (Synthese 77, 195 (1988)). В отличие от модели Альберта и Лёвера, модель не является подлинно стохастической, а также включает классическую случайность, связанную с начальными условиями в детерминированной Вселенной. Автор также сравнивает предложенный им метод восстановления правила Борна с предыдущими работами, основанными на теории принятия решений а-ля Дойч-Уоллес и а-ля Зурек, и обнаружил, что все эти подходы тесно связаны друг с другом.
2021-09-22 В издательстве «Млечный путь» (Иерусалим, 2021 г.) опубликован сборник научно-фантастических повестей и рассказов П.Р.Амнуэля «Конус жизни» https://www.limonova.co.il/product-page/конус-жизни-электронная-книга . В состав сборника вошли следующие произведения: «Конус жизни», «Жизнь», «Звезда», «Граница», «Я – виновен!», «И было утро…», «Без границ».
2021-09-20 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 17 сентября 2021 года представлена статья Сергея Г. Рубина и Хулио К. Фабриса (Sergey G. Rubin, Julio C. Fabris) из Национального исследовательского ядерного университета МИФИ (Московский инженерно-физический институт), Института математики и механики им. Лобачевского Казанского федерального университета (Россия), Федерального университета Эспириту-Санту в Витории (Бразилия): «Искажение дополнительных измерений в инфляционной Мультивселенной; («Distortion of extra dimensions in the inflationary Multiverse»); (arXiv:2109.08373). Обсуждается влияние квантовых флуктуаций при высоких энергиях на конечную форму компактных дополнительных измерений вселенных. В частности, авторы разрабатывают способ работы с квантовыми флуктуациями в 4 + n-мерном пространстве. Квантовые флуктуации создают широкий диапазон начальных условий в причинно несвязанных областях (карманных вселенных) Мультивселенной во время инфляционной стадии. По-видимому, физика низких энергий в разных карманных вселенных отличается, то есть каждая такая вселенная наделена определенным набором неидентичных физических параметров. Причем, подмножество таких карманных вселенных может иметь параметры, достаточные для зарождения разумной жизни.
2021-09-14 11 сентября 2021 года в 18-30 в нашем мире не стало Симона Эльевича Шноля. Каждый из тех, кто знал его лично и как учёного, и как человека, ощущает эту потерю по-своему. Мой опыт общения с ним продемонстрировал мне такие образцы глубокого ума, преданности идеалам науки, человеческого благородства и порядочности, что сейчас я не могу подобрать ни интонацию, ни слова для их выражения. Неизбежная, но и невыразимая печаль...
2021-09-13 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 09 сентября 2021 года представлена статья Дона Н. Пейджа (Don N. Page) из Университета Альберты в Эдмонтоне (Канада): «Классичность сознания» («Classicality of Consciousness»); (arXiv: 2109.04471 ). Пейдж продолжает размышлять о том, почему хотя наша Вселенная, безусловно, «кажется» квантовой, наши сознательные наблюдения «кажутся» почти полностью классическими. (См. представленную на сайте МЦЭИ 01.09.2021 года его статью: «Делает ли Декогеренция Наблюдения Классическими?»; (arXiv: 2108.13428), в которой он отмечает, что одной декогеренции кажется недостаточным для объяснения классичности типичных наблюдений). В этот раз в его статье анализируется концепции квантового дарвинизма (КД). Предлагается "простая игрушечная модель", которая позволила бы сознательному восприятию быть либо классическим (восприятие объектов без больших квантовых неопределенностей или отклонений), либо высококвантовым. Автор опирается на «законы психофизического параллелизма», вводит существование множеств Операторов Осознания, настроенных на существование в мозге информации о внешнем мире в виде нескольких («multiple») копий, которые на самом деле существуют в мозге. Автор "особенно благодарен" за обсуждения темы по электронной почте с Джеймсом Хартлом и Войцехом Зуреком, которые послужили мотивом для этого анализа.
2021-09-11 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов дополняет публикацию «Новостей» от 3 сентября 2021 года о работе Гислена Фурни (Ghislain Fourny); (Швейцария): «Будущее квантовой теории: Выход из тупика» («The Future of Quantum Theory: A Way Out of the Impasse»); (arXiv:2109.01028). В статье предлагается «нетривиальное ослабление общепринятого математического определения свободного выбора, что приводит к не-Нэшианскому (см. Джон Нэш, теория игр) свободному выбору». Отмечено, что существует ряд сходств и общих концепций между теорией игр и квантовой теорией.
2021-09-10 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 09 сентября 2021 года представлена статья Мандипа Сингха (Mandip Singh) из Индийского института научного образования и исследований в Мохали (Индия): «Жуткое действие на расстоянии также действует в прошлом» («Spooky action at a distance also acts in the pastSpooky action at a distance also acts in the past»); (arXiv:2109.04151). Термин "жуткое действие на расстоянии" был введен А. Эйнштейном, чтобы показать несоответствие квантовой механики принципу локальности и реальности. Измерение квантового состояния частицы запутанной пары приводит к тому, что квантовое состояние удаленной частицы немедленно определяется без какого-либо взаимодействия с ней. Инерциальная система отсчета, движущаяся с релятивистской скоростью, воспринимает эти события по-разному, так как их одновременность относительна. В статье показано, что разрушение запутанного квантового состояния происходит не только в настоящем и продолжается в будущем, но также и в прошлом.
2021-09-08 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 7 сентября 2021 года размещена статья Йонаша Фуксы (Jonáš Fuksa): «Пределы релятивистских квантовых измерений» («Limits on Relativistic Quantum Measurement»); (arXiv:2109.03187; работа была представлена в рамках курса математики Части III в Кембриджском университете). Автор отмечает, что причинность, по сути, не присутствует ни в обычной квантовой механике, ни в квантовой теории поля. Он обсуждает условия причинности как на языке алгебраической квантовой теории поля (АКТП), так и на языке квантовой теории информации. Важная проблема: обеспечить такие условия для наблюдаемых в квантовой теории поля (КТП), которые гарантируют, что их измерение не нарушит причинно-следственную связь. Задача поиска таких условий весьма нетривиальна, и автор не нашел удовлетворительного ответа в литературе. Чтобы найти простое условие, которое обеспечивает причинно-следственную связь, он «пытается сформулировать» условия такой связи для измерений, используя концепцию декогерентных историй (в широком смысле этого слова многомировую).
2021-09-03 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 2 сентября 2021 года размещена статья Гислена Фурни
2021-09-01 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 30 августа 2021 года представлена статья Дона Н. Пейджа (Don N. Page) из Университета Альберты в Эдмонтоне (Канада): «Делает ли Декогеренция Наблюдения Классическими?» («Does Decoherence Make Observations Classical?»); (arXiv: 2108.13428). Пейдж отмечает, что тот факт, что мы редко непосредственно наблюдаем большую квантовую неопределенность, часто объясняют декогеренцией. Декогеренция - это развитие квантовых корреляций между квантовой подсистемой и ее средой. В этом контексте расматривается вся вселенная (или мультивселенная, как совокупность взаимодействующих когда-нибудь суб-вселенных). Однако одной декогеренции кажется недостаточным для объяснения классичности типичных наблюдений. Уменьшается ли квантовая неопределенность в наблюдениях или нет, зависит от еще неизвестных правил получения наблюдений (и их мер или "вероятностей"). Эти моменты проиллюстрированы простой игрушечной моделью с бейсбольным мячом.
2021-08-30 На канале YouTube 30.08.21 выложена одиннадцатая передача цикла «Беседы об эвереттике».
2021-08-28 В «Библиотеке» выставлен перевод П.Р.Амнуэля (https://clck.ru/X9EKg ) статьи Стефано Беттини (Stefano Bettini) «Антропные рассуждения в космологии: историческая перспектива» (https://arxiv.org/abs/physics/0410144). Фундаментальная работа по истории возникновения идеи о неразрывной связи физических свойств нашего Универса с фактом нашего существования в нём. История идеи антропного принципа подробно (более 100 ссылок на первоисточники) прослеживается с середины 19 века, с работ Больцмана и его предшественников. Особенно подчёркивается, что именно введение Эвереттом в квантовую механику понятия «соотнесённое состояние» является важнейшим основанием для возникновения концепции сосуществующих вселенных и современного понимания смысла антропного принципа.
2021-08-27 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 26 августа 2021 года представлена работа Питера Д. Драммонда и Маргарет Д. Рид (Peter D Drummond and Margaret D Reid) из Технологического университета Суинберна в Мельбурне (Австралия): «Объективные квантовые поля, ретрокаузальность и онтология» («Objective quantum fields, retrocausality and ontology»); (arXiv:2108.11524; Entropy 2021, 1, 0. https://doi.org/). Согласно авторам, цель этой статьи состоит в том, чтобы обсудить новую интерпретацию квантовой механики «OQFT» как описание реальности с помощью модели объективных квантовых полей; модель включает ретрокаузальные поля. Здесь объективность подразумевает существование полей, независимых от наблюдателя, но не то, что результаты измерений предопределены: теория контекстуальна; учитывая, что "акт эксперимента" является частью Вселенной, непонятно, почему реальность должна быть независимой от нее. Предложенный подход устраняет «антропоморфный уклон», а именно уклон в сторону копенгагенского наблюдателя. В частности, кратко описаны «интерпретация множества вселенных», самосогласованные истории и модальные теории. По мнению авторов, ретрокаузальный подход обладает тем достоинством, что он концептуально прост по сравнению с такими альтернативами, как теория многих миров. Он предполагает, что существует много потенциальных вселенных, но не все они существуют одновременно. Также он не придает особого значения декогеренции; физика, вызывающая декогеренцию, не исключена, но и не требуется. Авторы надеются, что статья может быть полезна для тех, кто хочет получить общее представление о философии, лежащей в основе подхода OQFT, без математических деталей, которые представлены в других местах.
2021-08-23 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 19 августа 2021 года представлена статья Луиса Марчильдона (Louis Marchildon) из Университета Квебека (Канада): «О связи между квантовой теорией и вероятностью» («On the relation between quantum theory and probability»); (arXiv:2108.08848; Revue des questions scientifiques 192(1-2), 2021, 93-115).
2021-08-15 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 5 августа 2021 года представлена статья Сэмюэля Куйперса (Samuel Kuypers) из Оксфордского университета (Великобритания): «Квантовая теория времени: исчисление для Q-чисел» («The Quantum Theory of Time: a Calculus for Q-numbers») (arXiv:2108.02771). Автор напоминает, что при рассмотрении вневременного подхода к квантовой теории, разработанном Пейджем и Вуттерсом (1983), создается впечатление, что эта модель описывает блоковую вселенную, которая полностью вне времени, но это не так. Подсистемы этой стационарной вселенной могут эволюционировать относительно друг друга. (Возможно, первая итерация теории блочной вселенной была изобретена более двух тысячелетий назад, примерно в 500 г. до н. э., греческим философом досократического периода Парменидом. В рассказе Поппера (2012) об этом эпизоде в истории науки, Парменид создал блочную вселенную, обобщив сделанное им открытие о Луне. Современник Парменида, философ Гераклит, объяснил, что фазы Луны вызваны тем, что Луна представляет собой вращающуюся чашу, несущую огонь. Парменид понял, что фазы Луны не являются реальным изменением Луны, как в теории Гераклита, а являются лишь изменением ее внешнего вида, а Луна представляет собой сферу, освещаемую Солнцем под разными углами в течение синодического месяца. Парменид обобщил это открытие, предположив, что все движение только видимость, то есть что Вселенная принципиально неизменна. Блочная вселенная Парменида удивительно похожа на конструкцию Пейджа–Вуттерса, поскольку каждая из них описывает стационарную вселенную, в которой возникают время и динамика). Пейдж и Вуттерс сформулировали свои построения в представлении Шредингера и оставили открытой возможность того, что их конструкция все еще играет объяснительную роль в представлении Гейзенберга. В статье автор ликвидирует этот пробел и формулирует их конструкцию на основе картины Гейзенберга. Отмечено, что если момент времени уподобить моментальному снимку, то конструкция похожа на фотоальбом, содержащий всю совокупность таких снимков. Этот способ формулировки конструкции Пейджа – Вуттерса показывает ее глубокую связь с формализмом соотнесенного состояния Эверетта (1973), в котором состояние одной физической системы представлено относительно состояния другой. Из-за роли, которую формализм соотнесенного состояния Эверетта играет в построении Пейджа–Вуттерса, разные времена эквивалентны разным вселенным Эверетта (Deutsch 1997).
2021-08-12 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщил, что в архиве электронных препринтов 01 июля 2021 года представлена статья Фолькмара Путца и Карла Свозила (Volkmar Putz, Karl Svozil) из Педагогического колледжа Вены и Венского технического университета (Австрия): «Квантовая музыка, квантовое искусство и их восприятие» («Quantum music, quantum arts and their perception»); (arXiv:2108.05207). Каждый аспект человеческой жизни может быть переоценен и переосмыслен в терминах квантовой парадигмы. Рассмотрены различные расширения музыки и искусства в целом в квантовую область. В контексте свойств квантовых вычислений отмечены возможности в этой сфере. Они включают распараллеливание посредством когерентной суперпозиции (она же одновременная линейная комбинация) классически взаимоисключающих тонов или сигналов, которые являются акустическими, оптическими, осязательными, вкусовыми или иными сенсорными), запутанность, взаимодополняемость и контекстуальность. Рассмотрены конкретные примеры квантовой музыки. Восприятие квантового искусства зависит от способности аудитории либо воспринимать квантовые физические состояния как таковые, либо сводить их к классическим сигналам. В первом случае это может привести к совершенно новым художественным переживаниям. Например, квантовая музыка может звучать по-разному для разных наблюдателей. По мнению авторов, это важные вопросы, в том числе для восприятия в целом и нейрофизиологии человека. В частности, может существовать нечто вроде осознанного совместного переживания двух классических различных переживаний. Остаются ли такие переживания на подсознательном изначальном уровне восприятия, или это может быть перенесено на полный когнитивный уровень, — это увлекательный вопрос сам по себе, который выходит за рамки этой статьи.
2021-08-10 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 8 августа 2021 года представлена статья Хосе Мануэля Родригеса Кабальеро (José Manuel Rodríguez Caballero; внешний партнер проекта Wolfram Physics Project; директор Caballero Software Inc. Онтарио, Канада): «Несовместимость между моделями квантовой механики ‘т Хоофта и Вольфрама» («Incompatibility between ‘t Hooft’s and Wolfram’s models of quantum mechanics»); (arXiv: 2108.03751). По мнению автора, Стивен Вольфрам (2020) и Герард ‘т Хоофт (см. интерпретация квантовой механики как клеточного автомата, 2016; последнее время развивает тему: «Онтология в квантовой механике» («Ontology in quantum mechanics»; arXiv: 2107.14191) разработали классические модели квантовой механики. Причем модель Стивена Вольфрама можно рассматривать как недетерминированное обобщение модели ‘т Хоофта; в этой структуре квантовые эффекты могут быть объяснены «способом, аналогичным многомировой интерпретации Хью Эверетта» (ММИ). Отмечено, что ММИ предполагает множественные версии наблюдателя и применение принципа Коперника (постулат о том, что во Вселенной нет привилегированной точки зрения). В случае единого мира модели Вольфрама и ‘т Хоофта, по сути, одинаковы. Слово “несовместимость” из названия статьи используется, когда модель Вольфрама предполагает более одного мира.
2021-08-07 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 29 июля 2021 года размещена статья Герарда ‘т Хоофта (Gerard ’t Hooft) из Утрехтского университета (Нидерланды): «Онтология в квантовой механике» («Ontology in quantum mechanics»); (arXiv:2107.14191). Автор находится в поиске адекватной физической теории. Его цель состоит в том, чтобы «спасти концепцию онтологии» в противовес эпистемологии в квантовой механике (КМ). То есть атомы, молекулы, электроны и другие крошечные объекты являются характеристиками вещей, которые действительно существуют. Они эволюционируют в различные состояния или объекты, которые также существуют в соответствии с универсальными физическими законами. Это имеет смысл, если понимать КМ как векторное представление состояний. Векторные представления сами по себе допускают суперпозицию, и можно обнаружить, что суперпозиции “онтологических“ состояний развиваются с помощью тех же уравнений Шредингера. В частности, автор упоминает об “идее“, что если бесконечное количество “Вселенных” существует, то они части масштабной концепции под названием Мультивселенная “, причем эта идея “теперь известна“, как много-мировая интерпретация. По мнению автора, онтологическая интерпретация КМ оказывает большую помощь в разрешении многочисленных “парадоксов”, которые сбивали с толку ученых, а также студентов относительно того, что такое “реальность” на самом деле. Работа автора «далека от завершения». «Свежие молодые умы» должны исследовать оставшиеся загадки.
2021-08-06 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 3 августа 2021 года размещена статья Серджио Э. Агилар-Гутьерреса, Эйдана Чатвин-Дэвиса, Томаса Хертога, Натальи Пинзани-Фокеевой, Брэндона Робинсона (Sergio E. Aguilar-Gutierrez, Aidan Chatwin-Davies, Thomas Hertog, Natalia Pinzani-Fokeeva, Brandon Robinson) из Католического университета Левена (Бельгия), Университета Британской Колумбии в Ванкувере (Канада), Массачусетского технологического института в Кембридже (США), Университета Флоренции (Италия): «Острова в моделях Мультивселенной» («Islands in Multiverse Models»); (arXiv:2108.01278). Статья трудна для понимания. Авторы рассматривают двумерные модели Мультивселенной как игрушечные модели вечной инфляции. Они обнаружили, что в ряде случаев в модели могут развиваться некие «острова запутанности». В случае появления островов, замкнутая вселенная с гравитацией переплетается с негравитирующей квантовой системой. Другими словами, острова — это гравитирующие области, которые можно восстановить по квантовой информации, хранящейся в запутанной негравитирующей системе. Фундаментально классическая картина глобального пространства-времени, в основном заменяется полуклассической квантовой космологией с несколькими прошлыми историями, причем предлагается описание Мультивселенной, которое, по-видимому, противоречит ставшему традиционным представлению о космическом лоскутном одеяле из пузырьков.
2021-08-03 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 1 августа 2021 года размещена статья Джеймса Б. Хартла (James B. Hartle): «Предсказание в квантовой космологии» («Prediction in Quantum Cosmology»); (arXiv:2108.00494). Представлены лекции автора в летней школе Каргезе 1986 года с минимальными исправлениями. Некоторые из его взглядов на квантовую механику в космологии изменились по сравнению с представленными здесь, но все еще могут представлять исторический интерес. В частности отмечено, что для того, чтобы соответствовать наблюдениям, мы должны указать наблюдаемые последствия для состояния Вселенной, описываемого той или иной волновой функцией. Это обычно называется “интерпретацией” пси-функции. Предложены некоторые минимальные элементы интерпретации, которые, по мнению автора, позволят приписать пси-функцию Вселенной. Эти элементы являются примером “интерпретации Эверетта”.
2021-08-02 На канале YouTube выложена десятая встреча из цикла "Беседы об эвереттике" https://www.youtube.com/watch?v=9lIrY0TJAHM
2021-07-30 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 27 июля 2021 года размещена статья Терри Рудольфа
2021-07-30 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 28 июля 2021 года размещена статья лауреата Нобелевской премии Френка Вильчека (Frank Wilczek) из Массачусетского технологического института в Кембридже (США), Института Т. Д. Ли и квантового центра Вильчека, Шанхайского университета Цзяо Тонг, (Китай), Государственного университета Аризоны в Темпе (США), Стокгольмского университета (Швеция) («Models of Hidden Purity»); (arXiv:2107.13593). Работа трудна для понимания. Автор применяет, расширяет и обобщает модель квантового излучателя, предложенную Робертом Гриффитсом (автором концепции самосогласованных историй). Его модели полностью соответствуют основным принципам квантовой теории, обеспечивают крупнозернистость как реалистичных физических систем, так и экзотических пространственно-временных пространств, включая черные и белые дыры, бэби-вселенные и «блудные вселенные» Их анализ предполагает, в частности, интерференцию между частицей и ее собственным прошлым. В рамках модели можно реализовать обращение времени, в результате чего «блудная вселенная» вступает в контакт с ранее отдельной вселенной или воссоединяется с ней после долгого перерыва.
2021-07-23 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 20 июля 2021 года размещена статья Франсуа-Игоря Прися (Francois-Igor Pris): «Настоящий смысл квантовой механики» («The Real Meaning of Quantum Mechanics»); (arXiv: 2107.10666). Предлагается контекстно-реалистическая интерпретация реляционной квантовой механики. Принципиальный момент - правильное понимание концепции реальности и учет категориального различия между идеальным и реальным. В интерпретации автора сознание наблюдателя не играет никакой метафизической роли. Его контекстный реализм позволяет избавиться от метафизических проблем, с которыми сталкиваются различные интерпретации квантовой механики. Измерение — это не физическое взаимодействие, приводящее к изменению состояния системы, а идентификация контекстуальной физической реальности. Коррелированные события не возникают как элементы реальности; они есть. Возникают только их отождествления. Интерпретация автора, по его мнению, позволяет демистифицировать Эверетта или “множества миров” интерпретацию квантовой механики путем ее контекстуализации, то есть рассматривая миры Эверетта как все возможные контексты. Если интерпретацию Эверетта понимать в чисто теоретическом смысле – как введение правила для измерения квантовой реальности, – она приемлема. Однако обоснование правила Эверетта влечет за собой метафизическую много-мировую интерпретацию, которая «проблематична». Можно сказать, что в этом случае реальность фрагментирована. С метафизической точки зрения фрагментация выглядит как множественность невзаимодействующих (“параллельных”) миров. Согласно автору, правильнее сказать, что реальность контекстуальна.
2021-07-22 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 20 июля 2021 года размещена работа К. С. Унникришнана (C.S. Unnikrishnan) из Института фундаментальных исследований Тата,
2021-07-19 А.В.Каминский сообщил в дополнение к реферату от 2021-07-16 статьи Нироша Дж. Муругана и др. «Механочувствительность опосредует принятие долгосрочных пространственных решений в аневральном организме» (Mechanosensation Mediates Long-Range Spatial Decision-Making in an Aneural Organism) о работе Накагаки, Ямада, Тоса, «Решение лабиринтов амебоподобным организмом. (Nakagaki, T., Yamada, H. & Tóth, Á. «Maze-solving by an amoeboid organism»), опубликованной в Nature 407, 470 (2000). https://doi.org/10.1038/35035159 ).
2021-07-16 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 14 июля 2021 года размещена статья Данко Д. Георгиева (Danko D. Georgiev) из Института перспективных исследований в Варне (Болгария): «Квантовые склонности в коре головного мозга и свобода воли («Quantum propensities in the brain cortex and free will»); (arXiv:2107.06572; Biosystems 2021; 208: 104474). Согласно автору:
2021-07-16 Ведущий научный сотрудник МЦЭИ А.О.Майборода сообщает, что в журнале «Advanced Science News» опубликована (https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202008161 ) статья сотрудников ряда ведущих университетов США (Гарвардского, Тафта и др.) Нироша Дж. Муругана, Дэниела Х. Калтмана, Пола Х. Джин, Мелани Чиен, Рамсеса Мартинеса, Куонг К. Нгуен, Анна Кейн, Ричард Новак, Дональд Э. Ингбери Майкл Левин (Nirosha J. Murugan, Daniel H. Kaltman, Paul H. Jin, Melanie Chien, Ramses Martinez, Cuong Q. Nguyen, Anna Kane, Richard Novak, Donald E. Ingber, and Michael Levin) «Механочувствительность опосредует принятие долгосрочных пространственных решений в аневральном организме» (Mechanosensation Mediates Long-Range Spatial Decision-Making in an Aneural Organism). Изложение статьи представлено на сайте Хайтек https://hightech.fm/2021/07/15/slime-mold
2021-07-15 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 14 июля 2021 года размещена статья Мордехая Вэгелли (Mordecai Waegell) из Университета Чепмена в Оранже (США): «Локальная квантовая теория с жидкостями в пространстве-времени» («Local Quantum Theory with Fluids in Space-Time»); (arXiv:2107.06575). По мнению автора, теорема Белла в последнее время оказала такое влияние на сообщество, что создала распространенное и ошибочное впечатление, что любая локально-реалистическая интерпретация квантовой механики невозможна. Но на самом деле теорема Белла доказывает, что такая теория должна быть либо супердетерминистской, либо иметь несколько копий каждого наблюдателя, каждая из которых может наблюдать разные результаты измерения. В частности, это привело к мысли, что мы должны отказаться от понятия определенного причинного порядка, особенно на стыке квантовой механики и теории относительности. Представлена и проинтерпретирована локальная теория релятивистской квантовой физики в пространстве-времени, которая делает все те же эмпирические предсказания, что и традиционная делокализованная теория в конфигурационном пространстве. Каждая волновая функция фундаментальной системы описывается как движение жидкости в пространстве-времени, при этом жидкость распадается на множество классических точечных частиц, каждая из которых следует мировой линии и записывает локальную память. Представлен общий механизм локальных взаимодействий между двумя системами. Предполагается наличие мировых линий в разветвленном пространстве-времени, которое по-прежнему должна иметь определенную причинную структуру.
2021-07-13 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 11 июля 2021 года размещена статья Алона Уандера, Элиаху Коэна, Льва Вайдмана (Alon Wander, Eliahu Cohen, Lev Vaidman) из Тель-Авивского университета и Университета Бар Илан в Рамат-Гане (Израиль): «Три подхода к анализу контрфактуальности контрфактических протоколов» («Three approaches for analyzing the counterfactuality of counterfactual protocols»); (arXiv:2107.05055).
2021-07-08 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 7 июля 2021 года размещена работа Войцеха Губерта Зурека (Wojciech Hubert Zurek) из Лос-Аламосской национальной лаборатории (США): «Возникновение Классического изнутри Квантовой Вселенной» («Emergence of the Classical from within the Quantum Universe»); (arXiv: 2107.03378). Статья посвящена концепции квантового дарвинизма (КД). КД выходит за рамки декогеренции; неизбежным побочным продуктом декогеренции, как правило, является обилие информационных копий о предпочтительных состояниях в окружающей среде. Не все среды декогерирования одинаково полезны в качестве каналов связи. Свет превосходит все иные каналы связи, и мы, люди, в значительной степени полагаемся на фотоны, хотя другие органы чувств также могут предоставить нам полезную информацию. Действительно, объективная реальность, в существование которой мы все верим — это конструкция, созданная нашим сознанием и основанная на информации из вторых рук, «подслушанной» нами из окружающей среды. КД признает, что объективная классическая реальность, которую мы воспринимаем и в которую верим, в конечном счете, является моделью, построенной наблюдателями, чье сознание опирается на косвенные средства обнаружения объектов, представляющих интерес. КД все чаще признается ключом к возникновению знакомой классической реальности внутри нашей квантовой Вселенной. Его последствия не зависят от интерпретационной позиции, он опирается на универсальную применимость квантовой теории. Причем, по мнению автора, это явно совместимо с соотнесенными состояниями Эверетта.
2021-07-07 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 05 июля 2021 года размещена новая статья Джеймса Б. Хартла (James B. Hartle) из Калифорнийского университета в Санта-Барбаре (США): «Чему мы учимся, выводя правило Борна?» («What Do We Learn by Deriving Born’s Rule?»); (arXiv: 2107.02297). Правило Борна (ПБ) связывает квантовое состояние системы с вероятностями результатов проведенных над ней измерений. Было много выводов ПБ. Они различаются по уровню строгости, по предположениям, которые они делают, используемой математике и т. д. Некоторые используют симметрию, некоторые вычисляют частоты, некоторые подсчитывают ветви Эверетта, некоторые считают мультивселенные, некоторые считают наблюдателей, некоторые постулируют нелинейную квантовую динамику, а некоторые ссылаются на теорию принятия человеческих решений и т. д. Все выводы ПБ представляют интерес, потому что они говорят нам, что с чем связано в квантовой механике, что важно, если нам когда-нибудь понадобится ее модифицировать или изменить.
2021-07-06 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в в архиве электронных препринтов 5 июля 2021 года представлена работа (глава книги) Уэйна С. Мирволда (Wayne C. Myrvold) из Университета Западного Онтарио (Канада): «Релятивистские ограничения на интерпретации квантовой механики» («Relativistic Constraints on Interpretations of Quantum Mechanics»); (arXiv: 2107.02089). Представлен обзор ограничений, которые теория относительности накладывает на интерпретации квантовой теории. Рассмотрены четыре направления подхода: (i) теории «скрытых переменных» и модальные интерпретации, (ii) теории динамического коллапса, (iii) эвереттианские или «многомировые» интерпретации и (iv) нереалистичные интерпретации (QBism), отрицающие, что квантовые состояния представляют что-либо в физической реальности независимо от соображений агентов и их убеждений. Автор отмечает, что эвереттианские интерпретации используют минимальный механизм: они оставляют нетронутой обычную унитарную динамику и ничего не добавляют к квантовому состоянию. Сложности возникают в связи с созданием осмысленной картины мира с помощью этой минимальной палитры, а также с осмыслением вероятностей или их рабочей заменой. Из-за этой минимальности опасения по поводу совместимости с теорией относительности также минимальны. Для эвереттианских теорий относительность не представляет особой проблемы. Интересно, что Браун и Тимпсон (2016) считали, что значение теоремы Белла, как в ее детерминированной, так и в стохастической формах, может быть полностью понято только с учетом того факта, что полностью лоренц-ковариантная версия квантовой теории, свободная от действия на расстоянии, может быть сформулирована в интерпретации Эверетта.
2021-07-05 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 2 июля 2021 года представлена статья Александра Ю. Каменщика, Джинни Наллели Перес Родригес, Терезы Варданян (Alexander Yu. Kamenshchik, Jeinny Nallely Perez Rodriguez, Tereza Vardanyan) из Болонского университета, Национального института ядерной физики (Италия), Института теоретической физики им. Л.Д. Ландау РАН в Москве (Россия), Университета Л’Аквилы (Италия), Национальной лаборатории Гран-Сассо (Италия): «Время и эволюция в квантовой и классической космологии» («Time and Evolution in Quantum and Classical Cosmology»); (arXiv:2107.00917; Universe 7, 219. 2021). Авторы анализируют проблему динамической эволюции и времени в квантовой космологии. В частности, обсуждается интерпретация квантовой теории Монтевидео. Интерпретация Монтевидео основана на принципе, согласно которому квантовое описание реальности является единственным и фундаментальным, что похоже на многомировую интерпретацию квантовой механики. Отличительной особенностью интерпретации Монтевидео является ее внимание к понятию времени в квантовой теории. Проводится четкое различие между квантовыми часами, которые связаны с некоторой квантовой переменной и являются оператором, и координатным временем. Кроме того, ветвление, возникающее в интерпретации Эверетта в результате процесса, подобного измерению, становится приблизительным. Авторы, предлагающие интерпретацию Монтевидео (Gambini, R.; Pullin) подчеркивают, что они не изменяют квантовую механику. Они просто последовательно учитывают гравитационные эффекты, что приводит к разрешению некоторых давних проблем квантовой теории.
2021-07-01 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 30 июня 2021 года представлена статья Энтони Джей Шорта (Anthony J. Short) из Бристольского университета (Великобритания): «Вероятность в теориях многих миров» («Probability in many-worlds theories»); (arXiv:2106.16145). В работе показано, как определять естественное распределение вероятностей по мирам в рамках «простого класса детерминированных многомировых теорий». Рассмотрены: 1) квантовая теория многих миров; 2) ненормализованная квантовая теория многих миров; 3) стохастическая теория множества миров, которая представляет собой многомировую версию классического вероятностного мира; 4) дискретная многомировая теория, в которой существует целое число копий каждого мира, с динамикой, преобразующей каждый мир в конечное число новых миров. («Для простоты» автор «ограничился линейными теориями многих миров»). Приведено «три разумные аксиомы», которые приводят к правилу Борна в случае квантовой теории, а также дают естественные результаты в других случаях, включая многомировой вариант классической стохастической динамики. Автор считает, что его подход может помочь понять типичные свойства миров, и, следовательно, объяснить эмпирический успех квантовой теории в рамках многих миров.
2021-06-29 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 26 ноября 2020 года была представлена статья А. Мацкина и Д. Соколовского (А. Matzkin, D. Sokolovski) из CY Cergy Парижского университета в Сержи-Потуазе (Франция) и Университета Страны Басков, Баскского фонда науки в Бильбао (Испания): «Сценарии друзей Вигнера с неинвазивными слабыми измерениями» («Wigner Friend scenarios with non-invasive weak measurements»); (arXiv:2008.09003v2; Phys. Rev. A 102, 062204. 2020). В работе отмечено, что в статьях [3–5] Вигнер предполагал, что унитарная эволюция универсальна - подразумевая, что это также применимо к макроскопическим телам - но эта линейная суперпозиция не может быть применена к сознательному наблюдателю, производящему измерения. ... Автор делает интересное примечание: «на самом деле позиция Вигнера заключалась в том, что квантовая механика неприменима к сознательным наблюдателям. Он предположил [3, 5], что сознание индуцирует нелинейную модификацию линейной квантовой механики, хотя впоследствии изменил свое мнение» [6].
2021-06-24 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 23 июня 2021 года представлена работа Э. Р. Миранды, С. Венкатеша, К. Эрнани-Моралеса, Л. Ламата, Дж. Д. Мартин-Герреро, Э. Солано (E. R. Miranda, S. Venkatesh, C. Hernani-Morales, L. Lamata, J. D. Martín-Guerrero, E. Solano) из Плимутского университета (Великобритания), Университета Валенсии, Севильского университета, Университета Страны Басков в Бильбао, Баскского научного фонда (Испания), Международного центра квантового искусственного интеллекта для науки и техники и Шанхайского университета в Шанхае (Китай), Kipu Quantum в Мюнхене (Германия): «Квантовые сети мозга: перспектива» («Quantum Brain Networks: a Perspective»);(arXiv:2106.12295). Авторы предлагают «Квантовые сети мозга» (QBraiNs) как новую междисциплинарную область, объединяющую знания и методы нейротехнологий, искусственного интеллекта и квантовых вычислений. Цель состоит в том, чтобы развить улучшенную связь между человеческим мозгом и квантовыми компьютерами для различных приложений.
2021-06-24 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 23 июня 2021 года представлена статья Игоря Юрьевича Потемина (Igor Yu. Potemine) из Института математики Университета Поля Сабатье в Тулузе (Франция): «Объединенная геометрическая структура Локальной Мультивселенной» («Amalgamated Geometric Structure of the Local Multiverse»); (arXiv: 2106.12115). Автор рассматривает мультивселенные как «объединенные во времени многократно искривленные произведения лоренцевых (эйнштейновских) многообразий». Локальная Мультивселенная — это набор «параллельных вселенных» с (взаимно) синхронизированными временными шкалами. Метафизические соображения предполагают, что Локальная Мультивселенная может быть чрезвычайно сложной агломерацией, состоящей, по крайней мере, из нескольких сотен параллельных вселенных в окрестностях Солнца (и многих тысяч в огромных количествах галактик). В этой статье изучается упрощенная модель. Автор подразумевает «множественность элементарных частиц, которые, по сути, являются транс-космическими (супер) струнами с множеством конечных точек в параллельных вселенных, рассматриваемых как D-браны». В заключении автор дает ссылку на свою книгу (I. Potemine. Initiation into the Modern Transcosmology. ficbook.net, 2021. https://ficbook.net/readfic/10578229 (in Russian)) и выражает надежду, что физики-экспериментаторы смогут доказать множественность элементарных частиц в этом столетии.
2021-06-22 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщил, что в архиве электронных препринтов 18 июня 2021 года представлена статья Лотте Мертенс, Маттиаса Весселинга, Нильса Веркаутерена, Алонсо Корралес-Салазара, Джаспера ван Везеля (Lotte Mertens, Matthijs Wesseling, Niels Vercauteren, Alonso Corrales-Salazar, Jasper van Wezel) из Института теоретической физики Амстердама, Амстердамского университета (Нидерланды) и Института теоретической физики твердого тела в Дрездене (Германия): «Несоответствие линейной динамики и правила Борна» («The inconsistency of linear dynamics and Born’s rule»), (arXiv:2106.10136). По утверждению авторов (сторонников моделей объективного коллапса), настоящая работа предполагает, что вопрос о том, как правило Борна может возникнуть в интерпретациях или модификациях квантовой динамики без аксиоматического его включения, остается открытой проблемой. Показывается, что линейные модели для объективного коллапса не могут привести к правилу Борна, что вызывает удивление, учитывая, что они попадают в класс моделей, в которых появление правила Борна ранее считалось неизбежным. Причем, скрытые предположения, которые входят в предлагаемое доказательство появления правила Борна, не зависят от фактического присутствия, влияния или динамики каких-либо состояний окружающей среды. Поэтому, по существу, то же самое предлагаемое доказательство было применено и в нескольких других хорошо известных подходах к проблеме квантовых измерений, включая теорию пилотной волны и теорию многих миров. Показывается, что требование появления правила Борна для относительных частот результатов измерений, не навязывая их как часть какой-либо аксиомы, подразумевает, что такие объективные теории коллапса не могут быть линейными. Доказательство принципа нелинейности динамического закона, ведушего к закону Борна, удовлетворяющее всем характеристикам квантового измерения, легко построить для суперпозиции двух состояний. Показанная нелинейность может иметь значение для моделирования склеек в рамках эвереттики.
2021-06-21 На канале YouTube 21.06.21 выложена восьмая передача цикла "Беседы об эвереттике" https://www.youtube.com/watch?v=rHjSC8bYH54 .
2021-06-16 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 14 июня 2021 года представлена статья Карла-Эрика Эрикссона (Karl-Erik Eriksson) из Технологического университета Чалмерса (Швеция): «Дайте квантовой механике шанс: используйте релятивистскую квантовую механику для анализа измерений!» («Give quantum mechanics a chance: use relativistic quantum mechanics to analyze measurement!»); (arXiv:2106.07538). По мнению автора, на момент публикации формулировки соотнесенного состояния Х. Эверетта (1957) и многомировой интерпретации (ММИ) Девитта (1970) квантовая механика была доступна в более современной и адекватной версии, чем та, которая использовалась этими авторами. Автор считает, что квантовые измерения можно было бы анализировать в более традиционным направлении в космологии одного мира. Интересно Дополнение к статье, в котором утверждается, что MМИ — это мировоззрение, в котором наш опыт реальности есть ничто иное, как одно повествование о нашем мире среди бесчисленного множества других повествований в мире миров. Повествование существует только в одном мире и не может быть передано в другой мир. «Это, вероятно, близко к тому, что мог бы принять и сторонник MМИ». Постмодернисты рассматривают MМИ как мировоззрение, структурированное таким образом, что оно похоже на постмодернизм и поэтому полезно для его поддержки. Даже если постмодернисты не ценят науку, они могут ценить престиж науки. Таким образом, MМИ можно рассматривать как научную поддержку постмодернизма.
2021-06-11 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 9 июня 2021 года представлена статья Нурии Нургалиевой и Ренато Реннер (Nuriya Nurgalieva, Renato Renner) из Института теоретической физики в Цюрихе, (Швейцария): «Проверка квантовой теории с помощью мысленных экспериментов» (Testing quantum theory with thought experiments); (arXiv:2106.05314; Contemporary Physics, vol. 61, no. 3, July 2020, pp. 193-216). Авторы констатируют, что голый формализм квантовой теории не дает прямых ответов на кажущиеся простыми вопросы: например, как следует моделировать системы, включающие агентов, которые сами используют квантовую теорию? Эти основополагающие вопросы могут быть исследованы с помощью мысленных экспериментов. В статье дается обзор квантовых мысленных экспериментов с участием наблюдателей, от базового - друга Вигнера, до недавнего - парадокса Фраучигер-Реннера (ФР); D. Frauchiger and R. Renner. Quantum theory cannot consistently describe the use of itself. Nature Communications, 9(1):3711, 2018). Один из разделов статьи посвящен самосогласованным историям; один – много-мировым интерпретациям (ММИ). Рассматриваются: оригинальная ММИ Эверетта, которая нелокальна в том смысле, что ветвление, вызванное измерением, мгновенно влияет на всю Вселенную, локально реалистичные варианты интерпретации, где ветвление ограничено местоположениями, в которые был передан результат измерения (подход «параллельных жизней»); упоминается релятивистское расширение ММИ. Предлагаются три «разумно звучащих предположения», а именно Q (квантовая теория универсальна), C (взгляды различных агентов взаимно согласованы) и S (измерение имеет один результат для измеряющего агента), которые в разных интерпретациях могут не соблюдаться. Ни одна из основных интерпретаций квантовой теории не отвергает предположение S. Если S принимается как должное, то остается выбор между Q и C, и интерпретации разделяются на две категории. В частности, авторы отмечают, что в эксперименте Вигнера-Дойча измерения могут привести к полному стиранию памяти агентов, а в комментарии Скотта Ааронсона (2018) к парадоксу ФР отмечается, что противоречия, возникающие в мысленном эксперименте ФР, можно избежать, просто объявив, что выводы агента становятся недействительными, как только он теряет свою память из-за пагубного влияния измерений, которые применяются в лабораториях Алисы и Боба. Ни один из существующих вариантов не кажется авторам удовлетворительным. Они считают, что было бы разумно проверить, действительно ли системы, которые могут считаться агентами, все еще точно описываются квантовой теорией. Им совершенно очевидно, что такой тест не может быть проведен с человеческими агентами. Но агентом может быть любая система, способная использовать квантовую теорию. Таким образом, агенты могут быть заменены компьютерами. Требование эксперимента Вигнера-Дойча или эксперимента ФР о том, что агенты находятся в изолированных лабораториях, тогда соответствует требованию, чтобы несущие информацию степени свободы компьютеров были защищены от окружающей среды. Это обязательно относится к квантовым компьютерам; квантовые компьютеры могут стать ценным экспериментальным инструментом в исследованиях квантовых основ.
2021-06-10 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 6 июня 2021 года представлена статья Андрея Хренникова (Andrei Khrennikov) из Университета Линнея, Международного центра математического моделирования в физике и когнитивных науках Векшё (Швеция): «Квантово-подобная модель бессознательно-сознательного взаимодействия и эмоциональной окраски восприятий и других сознательных переживаний» (Quantum-like model for unconscious-conscious interaction and emotional coloring of perceptions and other conscious experiences); (arXiv:2106.05191). Квантовая теория измерений применена для квантово-подобного моделирования генерации восприятий, эмоций и эмоциональной окраски сознательных переживаний, других сознательных переживаний, включая принятие решений (восприятия и эмоции рассматриваются как сознательные переживания). Квантово-подобный подход не имеет прямой связи с изучением квантовых физических процессов в мозге (как у Пенроуза и Хамероффа), хотя и не исключает их. Функционирование мозга рассматривается в чисто информационных рамках, поэтому рассматриваемые состояния — это не физические (электрохимические) состояния, а состояния информационные. Проведено моделирования совместного функционирования бессознательного и сознательного на основе древовидной геометрии мозга. В представленном подходе мозг представляет собой макроскопическую систему, в которой обработка информации может быть описана формализмом квантовой теории. Другими словами, мозг, как информационный процессор, разделяется на два под-процессора - бессознательный и сознательный. Последний играет роль наблюдателя за первым. Это ментальная реализация схемы квантовых измерений для самонаблюдений, выполняемых мозгом. Одной из главных отличительных черт квантовой теории измерений является наличие несовместимых, то есть совместно ненаблюдаемых сущностей. В частности, наличие несовместимых наблюдаемых делает невозможным использование классической вероятностной модели (аксиома Колмогорова). Отмечено, что существование несовместимых восприятий или эмоций очевидно даже исходя из нашего личного опыта. Все это мотивирует использование математического формализма квантовой теории для моделирования самонаблюдений мозга.
2021-06-09 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщае, что в архиве электронных препринтов 8 июня 2021 года представлена статья Джеффри Барретта и Исаака Голдбринга (Jeffrey Barrett, Isaac Goldbring) из Калифорнийского университета в Ирвине (США): «Эвереттовская механика с бесконечным множеством миров» (Everettian mechanics with hyperfinitely many worlds); (arXiv:2106.04544). Показано, как можно смоделировать квантовую механику Эверетта с использованием гиперфинитного («hyperfinite») множества миров. Авторы отмечают, что цель их работы не в том, чтобы раз и навсегда дать описание миров квантовой механики Эверетта. Скорее, это предложение способа реконструкции оригинального представления Эверетта о том, как работают ветви в контексте бесчисленного множества миров и распределения вероятностей в таких мирах. Для выполнения поставленной задачи предложены «нестандартные методы». Доказываются гиперфинитные формулировки предельных свойств относительной частоты и случайности Эверетта, теоремы, которые он считал центральными в своей формулировке квантовой механики. Модель дает значения бесконечно близкие к стандартным квантовым вероятностям, когда вероятности конечны. Понимание человеком таких вероятностей, зависит от того, как он понимает миры и как он понимает неопределенность самолокализации в этих мирах. Понимание вероятности в теории многих миров, зависит от основной метафизической картины, которую мы принимаем. Этот подход также обеспечивает основу для рассмотрения формулировок безколлапсной квантовой механики в более общем плане.
2021-06-07 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 7 апреля 2021 года представлена статья Ареи Шантасри, Ивонны Гевара, Киарна Т. Лаверика, Говарда М. Виземана (Areeya Chantasri, Ivonne Guevara, Kiarn T. Laverick, Howard M. Wiseman) из Центра квантовой динамики Университета Гриффита в Квинсленде (Австралия) и Университета Махидол в Бангкоке (Таиланд): «Объединяющая теория оценки квантового состояния с использованием информации прошлого и будущего» («Unifying theory of quantum state estimation using past and future information» (arхiv:2104.02911). Авторы рассматривают проблему оценки квантового состояния, когда некоторые записи измерений недоступны и когда доступные записи поступают как до (из прошлого), так и после (из будущего) времени оценки, что позволяет увеличить ее точность. Информация о прошлом и будущем для квантовых систем ранее использовалась различными способами, один из них - векторный формализм с двумя состояниями. Соответственно, один из разделов статьи - «Векторный формализм с двумя состояниями». Авторы отслеживают историю понятия симметричной по времени формулировки квантовой механики с 1928 года, когда в примечательной сноске Эддингтона (A. S. Eddington, The Nature of the Physical World, Cambridge University Press, London, 1928) об вероятности в квантовой механике утверждалось, что ψ в квадрате («часто утверждается, что вероятность пропорциональна ψ в квадрате»): «...получается путем введения двух симметричных систем ψ-волн, движущихся во времени в противоположных направлениях … Вероятность обязательно означает “вероятность в свете определенной заданной информации”, так что вероятность не может быть представлена одной и той же функцией в разных классах задач с разными исходными данными” (опубликовано менее чем через два года после того, как Борн представил свое правило вероятности). Эта идея Эддингтона, по-видимому, была забыта, но вновь открыта и исследована Ватанабэ в 1950-х годах: для полного описания квантовой системы он ввел вектор состояния, направленный назад во времени (из будущего), называемый ретродиктивным состоянием, который должен использоваться в сочетании с обычным вектором состояния, развивающийся вперед во времени (из прошлого), называемый предиктивным состоянием. Впоследствии, в 1960-х годах, эта теория была вновь открыта как векторный формализм с двумя состояниями (TSVF) Ааронова, Бергмана и Лейбвица, получившая значительно больше внимания и обсуждений, чем ее предшественники.
2021-05-24 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 21 мая 2021 года представлена работа Фрэнка Дж. Типлера (Frank J. Tipler) из Тулейнского университета в Новом Орлеане (США): «Многомировая квантовая механика ни математически, ни экспериментально не эквивалентна Стандартной квантовой механике» («Many-Worlds Quantum Mechanics is Neither Mathematically Nor Experimentally Equivalent to Standard Quantum Mechanics»); (arXiv:2105.10431). Согласно автору, квантовая механика Многих Миров (ММИ) отличается от стандартной квантовой механики тем, что в ММИ волновая функция представляет собой относительную плотность вселенных в амплитуде мультивселенной, а не амплитуду вероятности. В ММИ частоты Борна не задаются априори; есть скорость приближения к предельным частотам, которую можно вычислить и сравнить с наблюдением. Автор использует ММИ, чтобы получить эту «скорость приближения» в двухщелевом эксперименте и показать, что она согласуется с наблюдениями. Интересно, что, согласно автору, постоянная Планка (ħ) в уравнении Шредингера - это сила взаимодействия между мирами (впрочем, о возможности склеек ничего не говорится), а «классический» мир - это траектория, по которой другие миры можно игнорировать.
2021-05-19 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 17 мая 2021 года представлена вторая редакция статьи С. A. З. Васконселлоса, П. О. Гесса, Д. Хаджимичефа, Б. Бодманна, М. Разейра, Г.Л. Фолькмера (C. A. Z. Vasconcellos, P. O. Hess, D. Hadjimichef, B. Bodmann, M. Razeira, G. L. Volkmer) из Федерального университета Риу-Гранди-ду-Су в Порту-Алегри (Бразилия), Международного центра релятивистской астрофизики (Италия), Национального автономного университета Мексики (Мексика), И.В. фон Гете университета в Гессене (Германия), Федерального университета в Санта-Мария (Бразилия), Федерального университета в Качапава-ду-Сул (Бразилия): «Расширяя границы времени за пределы сингулярности Большого взрыва: Вселенная разреза ветвей» («Pushing the limits of time beyond the Big Bang singularity: The branch cut universe»); (arXiv:2103.07799v2). Авторы следуют ранее разработанному ими теоретическому подходу, позволяющему избежать сингулярностей пространства-времени. В поисках преодоления сингулярностей в общей теории относительности они (Vasconcellos, Hadjimichef, Razeira, Volkmer, Bodmann, 2020) объединяют концепцию Мультивселенной С. Хокинга и Т. Хертога - гипотетического множества максимально симметричных и однородных, находящихся в суперпозиции, вселенных (Hawking & Hertog, 2018), и свой метод анализа, применяемый к метрике расширяющейся Вселенной Фридмана-Леметра-Робертсона-Уокера (ФЛРУ). Принятая ими техническая процедура приводит к решениям, соответствующим разрезам ветвей вселенной, которые позволяют обойти сингулярности. Этот формализм схож с квантовыми моделями эволюционирующей Вселенной, подразумевающими плавную смену периода расширения периодом сжатия. Такая модель допускает собой своего рода квантовое тунелирование между фазами расширения и сжатия.
2021-05-11 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 10 мая 2021 года представлена новая статья Дона Вайнгартена (Don Weingarten, donweingarten@hotmail.com): «Макроскопическая реальность из квантовой сложности» («Macroscopic Reality from Quantum Complexity»), (arXiv:2105.04545). Автор отмечает, что со времени появления много-мировой (ММИ) интерпретации квантовой механики «Эверетта-ДеВитта» опубликован ряд предложений о том, как вектор состояния квантовой системы может быть разделен в любой момент на ортогональные ветви, каждая из которых демонстрирует приблизительно классическое поведение. Однако, правила, в соответствии с которыми эти предложения должны применяться к миру, внутренне неопределенны и могут быть уточнены только произвольным выбором вспомогательных параметров. Неопределенность заключается не просто в приблизительном характере макроскопического описания лежащей в основе микроскопической системы, а скорее в том, что процесс ветвления самой микроскопической системы в каждом из этих предложений происходит в соответствии с неопределенными правилами. Автором предлагается разложение вектора состояния на ветви путем нахождения минимума меры среднеквадратичной квантовой сложности ветвей. В то время как ветвление в экспериментах - это физический процесс, который происходит с присутствием или без присутствия человека-наблюдателя, в соответствии с представленной концепцией, регистрация событий человеком привязана к одной ветви. Образование ветвей здесь - это всего лишь дополнительный слой мира, «лежащий» на слое неизмененной унитарной гамильтоновой временной эволюции. То есть, на временную эволюцию вектора состояния совершенно не влияет возникновение события ветвления. Статус ветвей, согласно автору, как минимум особенный. Мир, видимый человеческими наблюдателями, включает в себя элементы реальности, которые не могут быть идентифицированы просто векторами состояния. То есть, временная эволюция набора ветвей дает древовидную структуру, каждая ветвь которой в конечном итоге разделяется на пару суб-ветвей. Предлагаемый вектор состояния реального мира следует через дерево по единственной последовательности ветвей и суб-ветвей, причем суб-ветвь в каждом событии разделения выбирается случайным образом в соответствии с правилом Борна.
2021-05-10 На YourTube выложена шестая передача цикла "Беседы об эвереттике" по теме "История и эвереттика". https://youtu.be/NFrbq6qmM1s
2021-05-08 В «Библиотеке» выставлено эссе А.М.Костерина «Вечная жизнь» (https://disk.yandex.ru/i/HDloWu_St_p2xA). Кратко и ясно изложена интерпретация динамики воплощений действительностей эвереттического мультивидуума с христианской позиции.
2021-05-07 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 5 мая 2021 года представлена статья Дэвида Дж. Чалмерса и Келвина Дж. Макквина (David J. Chalmers, Kelvin J. McQueen) из Нью-Йоркского университета и Университета Чепмена (США): «Сознание и коллапс волновой функции» (Consciousness and the Collapse of the Wave Function); (arXiv:2105.02314). По оценке авторов, идея, что сознание коллапсирует квантовую волновую функцию была серьезно воспринята Джоном фон Нейманом и Юджином Вигнером, но теперь обычно отвергается. Тем не менее, авторы развивают эту идею, комбинируя математическую теорию сознания (интегрированную теорию информации Тонони) с моделью динамики квантового коллапса (непрерывная спонтанная локализация). Как и любая другая интерпретация квантовой механики, данная интерпретация имеет как серьезные издержки (дуализм), так и серьезные выгоды (принятие стандартной динамики, решение проблемы причинности сознания). Авторы не утверждают, что эта интерпретация превосходят другие интерпретации квантовой механики. Они «испытываем значительную симпатию» к другим интерпретациям и особенно к интерпретациям многих миров (см. Чалмерс (1996, гл. 10) и Макквин и Вайдман (2019)). Но они считают, что их гипотеза заслуживают пристального внимания. Авторы отмечают, что разработанная ими приблизительная модель требует, чтобы субъекты находились в суперпозиционных состояниях. Большие суперпозиции сознания (между существенно разными состояниями со значительной амплитудой в течение значительных периодов) будут редкими, но они будут возможны. Небольшие суперпозиции сознания (те, которые похожи на большие суперпозиции, за исключением того, что они краткие, с малой амплитудой или между тесно связанными состояниями) могут быть повсеместными. Фактически, может оказаться, что большинство или все сознательные субъекты являются небольшими суперпозициями сознания большую часть времени или все время. Во-первых, суперпозиции можно попытаться понять как знакомые состояния: например, суперпозиция видения объекта в положениях A и B может быть состоянием двоения в глазах. Более радикальная альтернатива гласит, что суперпозиционные состояния сознания включают в себя несколько субъектов, имеющих различные общие состояния сознательного опыта. Авторы расценивают этот вариант как экстравагантный, но возможный. Третий вариант состоит в том, что когда субъект находится в суперпозиции сознательных состояний А и В, нет никакого субъективного опыта пребывания в этой суперпозиции. То есть существуют состояния сознания, которые мы не можем интроспектировать или о которых не можем сообщать. Возможно, суперпозиции могут в значительной степени находиться ниже уровня нашего обычного интроспективного доступа. Интересно, что, по мнению авторов, в течение эонов Вселенная может сохраняться в совершенно бессознательном суперпозиционном состоянии без каких-либо коллапсов. В какой-то момент в какой-то ветви волновой функции может возникнуть физический коррелят сознания, приводящий к суперпозиции сознания и бессознательного (или их физических коррелятов) с низкой вероятностью для сознания. С большой вероятностью вселенная схлопнется обратно в бессознательное состояние. Поскольку это происходит неоднократно во многих ветвях волновой функции, в конечном итоге произойдет коллапс с низкой вероятностью в сторону состояния сознания, и сознание будет в состоянии закрепиться. Возможно, существуют альтернативные модели, в которых физические корреляты сознания включают более сложные свойства волновой функции или в которых сознание может изменяться независимо от каких-либо физических свойств. По оценке авторов, не то, что их интерпретации коллапса явно верны, но здесь есть исследовательская программа, которую стоит изучить.
2021-05-06 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 5 мая 2021 года представлена статья «независимого исследователя» из Рима (Италия), Карло Роселли (Carlo Roselli): «Физик в неоднозначной комнате: аргумент против необходимости сознания в процессе квантово-механических измерений» (The Physicist Inside the Ambiguous Room: an argument against the need of consciousness in quantum mechanical measurement process); (arXiv:2105.02174). Отправной точкой этой работы является то, что «идеалистическая» интерпретация квантовой механики (КМ), (в которой сознание необходимо для процесса квантовых измерений) требует суперпозиции макроскопически различных состояний, а также способности сознательного восприятия у наблюдателя, что необходимо, чтобы сознание сыграло фундаментальную роль в коллапсе волновой функции (ВФ). Сознание определяется как способность, которая позволяет человеку осознавать себя и свою умственную деятельность, а также способность учиться на восприятии внешних событий, на которые эта деятельность направлена. По мнению автора, ведущие современные ученые в этой области пытались заложить основы науки о сознании, но ни один из них еще не смог похвастаться многообещающим теоретическим подходом. Австралийский философ Дэвид Дж. Чалмерс утверждает, что для того, чтобы открыть окно к пониманию сознания, необходимо решить так называемую «трудную проблему», заключающуюся в нахождении корреляции между функциональными механизмами, порождаемыми нервной системой, активностью мозга и сознательным опытом. Предлагается мысленный эксперимент, который, по мнению автора, опровергает гипотезу о том, что коллапс ВФ вызван сознанием наблюдателя. Для достижения этой цели предлагается значительная модификация мысленного эксперимента кота Шредингера, в котором кота заменяет человек-физик, который намеренно, за 1 час до эксперимента принял «сильнодействующий наркотик» под названием «ВВС» (Временный выключатель сознания) «100% гарантированно отключающего сознание» на два часа и предотвращающий последующее вспоминание событий, произошедших во время действия препарата. Предполагается, что в определенных контролируемых обстоятельствах феномен сознательного восприятия, включая самосознание, может быть приостановлен. Другими словами, может существовать промежуток времени, в течение которого субъект полностью лишен самосознания и способности сознательно воспринимать сигналы, поступающие из внешнего окружения. Хотя это утверждение, вероятно, может быть подвергнуто сомнению с философской точки зрения, оно, по мнению автора, достаточно подкреплено здравым смыслом (а также некоторыми эмпирическими данными). Остается вопрос о том, какой должна быть лучшая альтернатива идеалистической интерпретации КМ, и очевидно, что это совершенно другая (и сложная) проблема. Идея, лежащая в основе мысленного эксперимента, заключается в том, что существуют два компонента, заданные ВФ и сознанием наблюдателя, которые в целом не могут быть четко разделены, по крайней мере, таким образом, чтобы сделать последнее причинным агентом в коллапсе ВФ. Если это верно, то плодотворным способом решения проблемы измерения может быть только тот, который рассматривает вышеупомянутые два компонента в единой согласованной структуре. Автор считает, что «недавние достижения в области квантовой декогерентности и пересмотр Интерпретации Многих миров Эверетта» предполагают, что такая структура может быть построена полностью в рамках самой теории КМ; см., например, Ролан Омнес (2004), Максимилиан Шлосшауэр (2007) и Дэвид Уоллес (2018), но, очевидно, это не единственный путь (далее автор ссылается на работы Бернарда д’Эспаньята (2011), Карло Роселли (т.е. себя) и Бруно Р. Стеллы (2021), Арта Хобсона (2018-2020); работы Гирарди, Римини и Вебера, и также интерпретации Пенроуза и Хамероффа-Пенроуза, в которых предполагается, что ВФ является физической реальностью, а ее коллапс - объективным динамическим процессом.
2021-05-04 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 03 мая 2021 года представлена статья Козимо Бэмби и Деяна Стойковича (Cosimo Bambi1, Dejan Stojkovic) из Университета Фудань в Шанхае (Китай) и Государственного университета Нью-Йорка (США): «Астрофизические червоточины» (Astrophysical Wormholes); (arXiv: 2105.00881). Данная статья представляет собой обзор (107 источников) прошлых и нынешних усилий по поиску астрофизических червоточин (кротовых нор) во Вселенной. По мнению авторов, существование проходимых червоточин - экзотическая, но увлекательная гипотеза, которую в данный момент нельзя исключить. Они могут представлять собой нашу единственную возможность для межзвездных и межгалактических путешествий в далеком будущем. Значительный прогресс, достигнутый за последние несколько лет в возможностях зондирования областей гравитации черных дыр, вызвал новые исследования по проверке того, являются ли астрофизические черные дыры или, по крайней мере, некоторые из них на самом деле устьями червоточин, которые ведут в далекие регионы или даже в другие вселенные (то есть предполагается возможность «склеек» между вселенными Мультивселенной).
2021-05-04 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 30 апреля 2021 года («пересмотрено 04.05.2021г.») представлена статья Джея Лоуренса (Jay Lawrence) из Дартмутского колледжа и Чикагского университета (США): «Наблюдая квантовое измерение» (Observing a Quantum Measurement); (arXiv: 2105.00061). На примере опыта Штерна-Герлаха (опыт, осуществлённый еще в 1922 году, который подтвердил квантование проекции вектора магнитного момента атомов), рассматриваются стандартный (Копенгагенская интерпретация), унитарный и объективный подходы к коллапсу квантового состояния, которые согласуются с самим наблюдаемым феноменом коллапса, но различаются по его ненаблюдаемым основам - существованию / отсутствию ненаблюдаемых ветвей в векторе состояния - и природе наблюдаемой случайности результатов (объективных или субъективных?). Возможно, но не обязательно, будущие эксперименты (существуют предложения использовать молекулярную интерферометрию, опто-механические явления, а также диффузию частиц, и есть надежда, что в течение следующего десятилетия или двух будут возможны окончательные тесты) позволят произвести выбор между разными подходами. Унитарная квантовая теория (УКТ) включает в себя много-мировую интерпретацию (ММИ), которая утверждает, что ненаблюдаемые ветви так же реальны, как и ветвь, которую мы переживаем, но УКТ шире. Она включает в себя ортодоксальную теорию декогеренции, практики которой позволяют различные интерпретации, и другие операционные подходы, которые утверждают независимость от интерпретаций, предполагая тем не менее унитарность. Третья позиция (теория объективного коллапса) гласит, что ненаблюдаемые ветви удаляются из теории с помощью механизма еще неизвестного происхождения, который действует в достаточно больших системах и который, в принципе, подлежит квантовому анализу. Жизнеспособность УКТ основывается на невидимости альтернативных (ненаблюдаемых) ветвей в векторе состояния. Дается новый взгляд на то, почему в рамках УКТ обычные измерения слепы к таким суперпозициям (в предложенной автором модели это свойство может быть обнаружено, но оно не может быть обнаружено в «обычных» экспериментах, так что его сохранение в векторе состояния открыто для интерпретации).
2021-04-30 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 28 апреля 2021 года представлена работа Джеймса Хартла из Калифорнийского университета в Санта-Барбаре и института Санта-Фе (США) и Мюррея Гелл-Манна (15 сентября 1929 — 24 мая 2019); (James B. Hartle, Murray Gell-Mann): «Мера классичности» («A Measure of Classicality»); (arXiv:2104.14465). По мнению авторов поразительной особенностью нашей фундаментально индетерминированной квантовой вселенной является ее квазиклассическая область, в которой действуют детерминисткие законы классической физики. Существует много типов квазиклассических сфер, которые могла бы продемонстрировать наша Вселенная, которые характеризуются различными переменными, различными уровнями крупнозернистости, различным местоположениям в пространстве-времени, различной классической физикой и различными уровнями классичности. Предлагается мера классичности для квазиклассических сфер, приводятся размышления о наблюдаемых последствиях различных уровней классичности, особенно для систем сбора и использования информации, таких как мы сами, как наблюдатели Вселенной. Предполагается, что наша Вселенная представляет собой мультивселенную квазиклассических реальностей. Эти различные квазиклассические области могут иметь различную физику низких энергий и разные уровни классичности. Типичная история в квазиклассической области будет описывать длительные промежутки времени классического поведения, прерываемые неклассическими событиями, такими как квантовые флуктуации, квантовые переходы и квантовые измерения. Именно по этой причине мы относимся к квазиклассическим реальностям, а не к классическим областям. Могут ли эти различные квазиклассические области иметь разные виды и количество систем сбора и использования информации? Сможем ли мы общаться с ними, если бы они были? Авторы не в силах ответить на такие вопросы. Но можно представить, что они могут быть решены в будущем как теоретически, так и экспериментально. Поможет мера классичности, разработанная в этой статье.
2021-04-28 На сайте Института исследований природы времени (ИИПВ) 24.04.21 г. научный сотрудник И.Л.Зерчанинова представила работу Стефана Александера, Вильяма Дж. Каннингхема, Ярона Ланиера, Ли Смолина, Стефана Станоевича, Михаила В. Тумей, Дейва Векера «Автодидактическая вселенная» (Stephon Alexander, William J. Cunningham, Jaron Lanier, Lee Smolin, Stefan Stanojevic, Michael W. Toomey, Dave Wecker. The autodidactic universe = Автодидактическая Вселенная . Препринт. 9 апреля 2021 г. 79 стр.) http://www.chronos.msu.ru/ru/rnews/novosti-ot-uchastnikov-seminara/novosti-ot-uchastnikov-seminara/tematicheskie-publikatsii-24-04-2021-g .
2021-04-26 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 22 апреля 2021 года представлена статья Хартмута Невена, Питера Рида, Тобиаса Риса (Hartmut Neven, Peter Read, Tobias Rees) из Google Quantum AI (США), Technology Investor, London (Великобритания), Института Берггрюна в Лос-Анжелесе (США): «Есть ли у роботов, работающих на квантовом процессоре, свобода маневра? О сознании, чувствах, Воле и квантовом искусственном интеллекте» («Do Robots powered by a Quantum Processor have the Freedom to swerve? On Consciousness, Feelings, Agency and Quantum Artificial Intelligenc»); (arXiv: 2104.11591). Согласно авторам, в 20-м веке, когда современные физики, такие как Планк, Гейзенберг, Шредингер и Фейнман, изобрели новое количественное описание - квантовую механику, они заменили определенные траектории множеством траекторий, каждая из которых проходит в отдельной ветви мультивселенной, открывая возможность для непредсказуемого поведения. Авторы предпочитают панпсихистское представление, согласно которому сознание может быть распределенной особенностью Вселенной. Для них «говоря простым языком, сознание - это то, что кажется выбором единственной классической реальности из мультивселенной». Квантовая система, состоящая из суперпозиции альтернативных классических конфигураций, естественно подходит для выполнения этой роли, и она может быть экспоненциально более эффективной при выполнении алгоритмов, необходимых для выполнения этой задачи. Утверждается, что свобода воли является общим свойством материи и что это разрешено известными законами физики. Авторам, кажется необходимым, чтобы точки зрения от первого и третьего лица были связаны, а программа науки направлена на достижение все более точного соответствия между описаниями от первого и третьего лица. Только сейчас начинается создание машин, квантовых компьютеров, которые в полной мере используют новые возможности, предоставляемые законами квантовой механики. Авторами предлагается дизайн для проектирования анимата (робота с поведением животного), для которого можно провокационно утверждать, что он сознателен и обладает свободой воли и чувствами. Они ожидают, что мировоззрение, мотивированное игрой с этим новым поколением устройств, сделает Природу более похожей на разумный организм с чувствами и свободой действий.
2021-04-21 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 17 апреля 2021 года представлена статья Адитья Айера, Эдуардо О. Диаса, Влатко Ведрала (Aditya Iyer, Eduardo O. Dias, Vlatko Vedral) из Оксфордского университета (Великобритания), Федерального университета в Пернамбуко (Бразилия), Центра квантовых технологий и Национального университета Сингапура: «Единый квантовый формализм, характеризующий пространственно-временные события и их квантово-информационные аспекты» («A unified quantum formalism characterizing spacelike and timelike events and their quantum information aspects»); (arXiv:2104.09501). Авторы развивают подход, при котором пространственные и временные (причинно-связанные) события рассматриваются на равных основаниях. Отмечается, что включение в рассмотрение временного регистра порождает временную суперпозицию, аналогичную знакомой пространственной суперпозиции в квантовой механике (КМ). Напоминается, что КM предсказывает неклассические временные корреляции. Эти корреляции понимаются как перепутанность-запутанность во времени между результатами измерений, выполненных в разное время в одной и той же физической системе. Авторы ссылаются и на иные подходы к описанию временных корреляций, например, на самосогласованные истории Р. Гриффитса, матрицы псевдоплотности, операторы сверхплотности и перепутанные истории по Френку Вильчеку и Джордану Котляру (которые авторы рассматривают как частный случай своей модели). Представленный формализм позволяет одновременно применять концепции квантовой информации к пространственно-подобным и времени-подобным событиям.
2021-04-21 На YouTube 19 апреля выставлена запись пятой встречи цикла "Беседы об эвереттике" по теме «Религиозные аспекты эвереттики» https://www.youtube.com/watch?v=ekcyWVykScQ .
2021-04-16 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 12 апреля 2021 года размещена статья Александра Александровича Ежова (Alexandr A. Ezhov) из Троицкого института инновационных и термоядерных исследований (Россия): «О квантовых нейронных сетях» («On quantum neural networks»), (arXiv:2104.07106). Автор утверждает, что понятие квантовой нейронной сети должно быть определено в терминах ее наиболее общей функции как инструмента представления амплитуды произвольного квантового процесса. Определение квантового нейронного компьютера, данное Субхашем Каком (S. Kak; 1995): “Мы определяем квантовый нейронный компьютер как сильно коннекционистскую систему, которая, тем не менее, характеризуется волновой функцией”, а также: “В отличие от квантового компьютера, который состоит из квантовых вентилей в качестве компонентов, квантовый нейронный компьютер состоит из нейронной сети, в которой поддерживаются квантовые процессы”. Отмечено, что, в рассуждениях о волновой функции, описывающей квантовую нейронную сеть, используется язык канонической копенгагенской интерпретации квантовой механики. Представленное определение квантовых нейронных сетей было использовано и уточнено Тамми Менниром и Аджитом Нараянаном (T. Menneer, A. Narayanan, Technical Report R329, Department of Computer Science, University of Exeter, Exeter, UK, (1995). A. Narayanan, T. Menneer,Information Sciences, 128, 231. 2000). Они представили два подхода к созданию новой нейросетевой модели, вдохновленной квантовыми концепциями: Первый из них, “нейросетевой подход», рассматривает каждый паттерн в обучающем наборе как частицу, которая обрабатывается рядом различных нейронных сетей в разных вселенных. Второй подход рассматривает каждый паттерн в обучающем наборе как частицу, которая обрабатывается в своей собственной вселенной и ни в какой другой“. Примечательно, что Т. Меннир и А. Нараянан (T. Menneer, A. Narayanan; 1995) явно использовали многомировую интерпретацию квантовой механики, сторонник которой Дэвид Дойч является одним из отцов квантовых вычислений. Итак, они предположили, что квантовая нейронная сеть - это суперпозиция классических нейронных сетей, каждая из которых существует в своем собственном мире. А согласно формулировке Кака (S. Kak; 1995), такая квантовая нейронная сеть, очевидно, описывается одной волновой функцией. Также отмечено, что автор первого известного квантового алгоритма Питер Шор считал, что копенгагенская и многомировая интерпретации полезны для различных ситуаций (J. Horgan, Quantum Computing for English Majors, Scientific American, June 20 (2019): “Бывают моменты, когда размышления о квантовой механике с использованием копенгагенской интерпретации помогут вам понять вещи, а бывают и другие моменты, когда многомировая интерпретация более полезна для понимания вещей. Поскольку эти две интерпретации дают точно такие же предсказания, не имеет значения, какую из них вы используете. Поэтому вы должны использовать то, что дает вам лучшую интуицию для решения проблемы, над которой вы работаете”. Автор отмечает, что его рассуждения основаны на использовании интегральной формулировки пути Фейнмана. Наконец, доказывается, что интеллект, естественный или искусственный, а также машинное обучение вместе со специалистами, работающими в этих и других областях науки, можно рассматривать как части своего рода квантовой нейронной сети, потому что Вселенная, в которой мы живем, также может рассматриваться как глобальная квантовая нейронная сеть.
2021-04-14 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 09 апреля 2021 года представлена новая статьи Ф. В. Боппа (F.W. Bopp) из Университета Зиген (Германия): «Проблема измерения в квантовой механике и гипотеза сюръекции»; («Measurement Problem in Quantum Mechanics and the Surjection Hypothesis»); (arXiv:2104.04508). Автор развивает свою концепцию двунаправленной во времени Вселенной, в которой наблюдаемое ускоренное расширение в конечном итоге сменяется сжатием; соотносятся квантовое и макроскопическое описание (см. «Сложный квантово-статистический эффект и основы квантовой механики»; («An intricate quantum statistical effect and the foundation of quantum mechanics»); arXiv:1909.01391v2). В данной статье утверждается, что квантовая механика (КМ) содержит унитарную квантовую динамику и физику квантовых измерений. Квантовые измерения можно разделить на четыре составляющие: фуркация (позднелат. furcatus – разделенный; точка в развитии чего-то, предполагающая вариативность развития), продуцирование свидетелей, проектирование выравнивания и выбор фактического решения. В фуркации волновые функции расщепляются; отмечается, что в квантово-динамической эволюции существует множество расщеплений и слияний. В процессе выравнивания (используется процесс декогеренции) выбираются совпадающие компоненты и устраняется интерференционные. Наконец, выбор основан на двухграничных интерпретациях, применяемых к полной квантовой вселенной. Автор предлагает способ свести эти кажущиеся случайными проекции к чисто детерминированной унитарной квантовой динамике, «устраняя проблему измерения». По его мнению, полученное описание близко к многомировой интерпретации, в которой путь определяется сообществом наблюдателей, видящих идентичные результаты измерений; из такого описания можно было бы получить интерпретацию вектора двух состояний Ааронова с соавторами (1964; 2017).
2021-04-14 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 12 апреля 2021 года размещена новая статья Леонардо Кастеллани (Leonardo Castellani) из Университета Восточного Пьемонта и Центра Арнольда-Реджа в Турине (Италия): «Энтропия временной запутанности» («Entropy of temporal entanglement»), (arXiv:2104.05722). Автор продолжает развивать свой подход к описанию запутанных квантовых историй и вычисления их энтропии (см. Леонардо Кастеллани: «Энтропия запутанности истории» («History entanglement entropy»), arXiv:2009.02331). Развивается предложенный ранее формализм для описания запутанных квантовых историй и их энтропии запутанности, используется понятие вектора истории, «живущего» в тензорном пространстве с соответствующими допустимыми историями, то есть историями с неисчезающими амплитудами. В вышеупомянутой предыдущей своей работе автор отмечал, что его подход схож по духу с концепцией запутанных историй Дж. Котляра и Ф. Вильчека (2015-2018), но имеет существенные отличия. Так, каждый вектор истории имеет графическое представление интервалов допустимых историй, и коллапс после последовательности измерений влечет за собой исчезновение некоторых историй. В этом смысле измерение «изменяет прошлое», но никогда не подвергает опасности причинно-следственную связь.
2021-04-13 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 03 марта 2021 года представлена статья Алана Маккензи (Alan McKenzie) из Школы физики и астрономии Университета Сент - Эндрюса (Шотландия): «Реальность и сверхреальность: свойства математической мультивселенной» («Reality and super-reality: properties of a mathematical multiverse); (arXiv:2104.05399; Journal reference: Axiomathes, 30(4), 453-478. 2020). Автор рассматривает Вселенную и мультивселенную в основном как сложные паттерны или математические структуры. Он считает, что абсолютная случайность квантовых результатов наиболее удовлетворительно объясняется наличием мультивселенной дискретных параллельных вселенных. Некоторые из них должны быть идентичны друг другу, но это создает дилемму, потому что каждая математическая структура должна быть уникальной. Решение состоит в том, что параллельные вселенные должны быть встроены в математическую структуру, мультивселенную, которая позволяет вселенным быть идентичными внутри себя, но, тем не менее, различными, как это определяется их положением в структуре. Мультивселенная нуждается в большем количестве эмерджентных параметров, чем наша Вселенная, и поэтому ее можно рассматривать как надстройку. Соответственно, ее реальность можно назвать сверхреальностью. В то время как реальности отдельных вселенных никогда не могут пересекаться, реальность надстройки включает в себя реальность каждой встроенной вселенной.
2021-04-09 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в ютубе с 8 апреля 2021 года доступно видео: «Красота космоса, математика и Бог. Философские разговоры с физиком Алексеем Буровым. Беседа 1» (https://www.youtube.com/watch?v=MFhoQDfIo6A). С 39:30 затрагивается тема Мультивселенной.
2021-04-03 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в журнале «Популярная механика» №10 за 2020 год опубликована статья Романа Фишмана: «Миры миров: как стать президентом в Мультивселенной». https://elementy.ru/nauchno- populyarnaya_biblioteka/435554/Miry_mirov_kak_stat_prezidentom_v_Multivselennoy
2021-04-02 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 31 марта 2021 года представлена статья Энрике Газтанаги и Пабло Фосальба (Enrique Gaztanaga, Pablo Fosalba) из Института космических наук и Института космических исследований Каталонии в Барселоне (Испания): «Взгляд за пределы нашей Вселенной» («A peek outside our Universe»); (arXiv:2104.00521). Согласно Общей теории относительности (ОТО) Вселенная с имеющейся космологической постоянной подобной нашей, должна находиться в ловушке внутри горизонта событий. Что снаружи? Авторы доказывают что снаружи может быть другая Вселенная. Наша Вселенная для внешнего наблюдателя выглядит как Черная дыра. Исходящие радиальные нулевые геодезические (нулевые геодезические - это мировые линии фотонов; радиальные - это те, которые движутся прямо к центральной массе или от нее) не могут покинуть нашу Вселенную, но входящие фотоны могут войти и оставить отпечаток на нашем небе в КМФ. (КМФ - космический микроволновый фон в космологии Большого взрыва - это электромагнитное излучение, которое является остатком ранней стадии Вселенной, также известной как «реликтовое излучение». КМФ - это слабое космическое фоновое излучение, заполняющее все пространство. см. site: wikichi.ru). На основе анализа карт реликтового излучения авторами показано наличие крупномасштабный картины анизотропии, которая согласуется с предсказаниями Вселенной Черных дыр. Предполагается, что лежащий в ее основе физический механизм охватывает масштабы за пределами нашей причинной вселенной. Это явно противоречит простым моделям инфляции и открывает дверь для пересмотра основ понимания происхождения изначальной Вселенной.
2021-03-31 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в своей статье: «Опровержение фундаментализма Гильбертова пространства» («Refutation of Hilbert Space Fundamentalism»); (arXiv:2103.15104) Овидиу Кристинел Стойка (Ovidiu Cristinel Stoica) дал ссылку на текст Скотта Ааронсона (профессор отделения компьютерных наук Техасского университета в Остине, директор Центра квантовой информации; специалист в области квантовых вычислений и теории сложности вычислений), размещенный в его блоге от 4 марта 2021 года: «Дзэнская Антиинтерпретация Квантовой механики» (S.Aaronson, The Zen anti-interpretation of Quantum Mechanics, www.scottaaronson.com/blog/?p=5359. 2021). С. Ааронсон, в частности, пишет: «Я не хочу сказать, что все интерпретации взаимозаменяемы или одинаково хороши или плохи. Если бы вам пришлось, вы могли бы назвать даже меня «многимировым», но только в следующем ограниченном смысле: за пятнадцать лет преподавания квантовой информации мой опыт неизменно показывает, что для большинства студентов костыль Эверетта - лучший в настоящее время на рынке. Во всяком случае, это то, что больше всего похоже на прямую картину уравнений и меньше всего на шаткую башню слов, которая может рухнуть, если вы произнесете какое-нибудь неправильное. В отличие от Бора, Эверетт никогда не заставит вас чувствовать себя глупо, задавая вопросы, которые задал бы любознательный ребенок; он просто даст вам ответы, которые так же ясны, логичны и внутренне последовательны, как и метафизически экстравагантны. Это только начало».
2021-03-30 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 28 марта 2021 года представлена новая небольшая по объему статья Овидиу Кристинел Стойка (Ovidiu Cristinel Stoica) из Национального института физики и ядерной инженерии в Бухаресте (Румыния): «Опровержение фундаментализма Гильбертова пространства» («Refutation of Hilbert Space Fundamentalism»); (arXiv:2103.15104). Статья дополняет недавнюю работу автора: «3D-пространство и предпочтительный базис не могут однозначно возникнуть из квантовой структуры» («3D-Space and the preferred basis cannot uniquely emerge from the quantum structure»); (arXiv:2102.08620), учитывает размещенную 17 марта текущего года на сайте архив.орг статью Шона М. Кэрролла (Sean M. Carroll): «Реальность как вектор в Гильбертовом пространстве»); («Reality as a Vector in Hilbert Space»); (arXiv:2103.09780). Под "фундаментализмом Гильбертова пространства" автор подразумевает ситуацию, в которой единственными фундаментальными структурами являются вектор состояния и гамильтониан, а все особенности физической системы, включая трехмерное пространство, предпочтительный базис и факторизацию на подсистемы, однозначно возникают только из вектора состояния и гамильтониана, независимо от того, предполагают ли они теоретико-информационный, декогерентный, эвереттианский подходы или минималисткий подход Кэрролла и Сингха, названный самими авторами "Бешеным псом Эвереттианизма".
2021-03-30 На канале YouTube выложен ролик "Беседы об эвереттике. Встреча четвёртая. Мезоскопический антропный принцип и жизнь на Земле" (https://youtu.be/ijFNdE77-gQ )
2021-03-29 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 26 марта 2021 года представлена вторая редакция статьи Гила Калаи (Gil Kalai) из Еврейского университета Иерусалима и Интердисциплинарного центра в Герцлии (Израиль): «Аргумент против квантовых компьютеров, квантовых законов природы и претензий Google на превосходство»); («The Argument against Quantum Computers, the Quantum Laws of Nature, and Google’s Supremacy Claims»); (arXiv:2008.05188v2). Статья не обсуждает многомировую интерпретацию квантовой механики. Однако автор приводит очень любопытную «многомировую» цитату из работы Френка Вильчека 2015 года: «Физика за 100 лет» (F. Wilczek, «Physics in 100 years»; arXiv:1503.07735): «Квантовая механика открывает возможности для качественно новых форм сознания. Квантовый разум может испытывать суперпозицию “взаимно противоречащих” состояний или позволить различным частям своей волновой функции параллельно исследовать совершенно разные сценарии. Будучи основанным на обратимых вычислениях, такой разум мог бы возвращаться к прошлому по своему желанию и мог бы быть оснащен для того, чтобы совмещать прошлое и настоящее». В оригинале, у Ф. Вильчека рассуждения о квантовом разуме начинаются следующим образом: «Искусственный интеллект, в общем, предлагает странные новые возможности для жизни разума. Сущность, способная точно фиксировать свое состояние, может намеренно входить в циклы, чтобы, например, вновь пережить особенно приятные эпизоды».
2021-03-24 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 23 марта 2021 года представлена статья Кьяра Марлетто, Влатко Ведрала, Сальваторе Вирца, Алессио Авелла, Фабрицио Пьячентини, Марко Граменья, Иво Пьетро Деджованни, Марко Дженовезе (Chiara Marletto, Vlatko Vedral, Salvatore Virz, Alessio Avella, Fabrizio Piacentini, Marco Gramegna, Ivo Pietro Degiovanni, Marco Genovese) из Оксфордского университета (Великобритания), Национального университета Сингапура (Сингапур), Института научного обмена в Турине, Туринского университета, Национального института метрологических исследований в Турине (Италия): «Временная телепортация с операторами псевдоплотности: как динамика возникает из временной запутанности» («Temporal teleportation with pseudo-density operators: how dynamics emerges from temporal entanglement»); (arXiv:2103.12636). Авторы показывают, что, используя временные квантовые корреляции, выраженные операторами псевдоплотности (ОПП - унифицированный дескриптор как временных, так и пространственных корреляций), можно формально восстановить стандартную квантовую динамическую эволюцию как последовательность телепортаций во времени. Возможности протокола ОПП вытекают из строгого формального соответствия между пространственной и временной запутанностью в квантовой теории. Применение этой «мощной логики» недавно привело к экспериментальному моделированию, показавшему, что ОПП может быть плодотворным способом описания даже тогда, когда речь идет о таких пространствах-временах, которые содержат открытые и закрытые временные кривые (авторы описывают конкретный эксперимент на фотонных кубитах - экспериментальную демонстрацию своей гипотезы).
2021-03-19 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 16 марта 2021 года представлена работа Майкла Э. Куффаро (Michael E. Cuffaro) из Центра математической философии Мюнхена, Университета Людвига-Максимилиана, Мюнхен (Германия): «Философия квантовых вычислений»); («The Philosophy of Quantum Computing»); (arXiv:2103.09334; глава для книги: «Квантовые вычисления в искусстве и гуманитарных науках: введение в основные концепции, теорию и приложения». Э. Р. Миранда (Ред.). Cham: Springer Nature, 202x, предварительная версия от 16 марта 2021 г.). Автор считает, что квантовые вычисления объединяют фундаментальные понятия двух различных наук: физики (особенно квантовой механики) и информатики в одну совершенно новую (или даже совсем независимую) науку. Один из разделов его статьи, раздел №3, носит название: «Квантовые вычисления и параллельные вселенные». Согласно автору, интерпретация квантовой механики, которая обсуждается в этом разделе, является одной из многих взаимосвязанных интерпретаций квантовой механики, которые в совокупности называются "интерпретацией Эверетта". Они включают, но не ограничиваются оригинальной формулировкой Хью Эверетта III (EverettIII,1956), "Берлин-Эвереттианством" Кристофа Ленера (Lehner,1997), "версией Эверетта" Льва Вайдмана (Vaidman, 1998), так называемыми вариантами "многих умов" (Albert & Loewer, 1988) и, наконец, вариантами "многих миров", которые являются основой для многомирового (ММИ) объяснения квантовых вычислений. К последней группе относятся точка зрения Брайса Девитта (DeWitt,1973[1971]), а также интерпретация "Оксфордского Эверетта" (Deutsch, 1997; Saunders,1995; Wallace,2003,2012), которую автор подробно анализирует. Он называет "проблемы" ММИ: проблема предпочтительного базиса, проблема объяснения вероятностей с точки зрения Эверетта, дает ссылки для получения дополнительной информации по этому вопросу см. Adlam (2014), Dawid & Thébault (2015), Greaves & Myrvold (2010), Vaidman (1998, 2012) и Wallace (2007). Самая сильная и наиболее глубокая защита многомирового объяснения квантовых вычислений, "о котором знает автор", - работа Хьюитт-Хорсмана (Hewitt-Horsman, 2009). По мнению автора, большая часть мотивов тех, кто придерживается многомирового объяснения квантовых вычислений, в первую очередь, заключается в том, что для алгоритмического анализа и проектирования "полезно верить", что квантовый компьютер выполняет свои вычисления в параллельных мирах. Однако ММИ не является единственной версией объяснения скорости квантовых вычислений. Сам термин "квантовый компьютер" не относится к какой-то одной конкретной модели вычислений, а скорее является обобщающим термином для ряда различных вычислительных моделей. Так, автор предостерегает от того, чтобы "догматически придерживаться" мнения о том, что многие миры физически ответственны за ускорение вычислений в модели квантовых компьютеров на кластерных состояниях, поскольку ММИ не помогает создавать алгоритмы именно для такой модели квантового компьютера. Он опасается, что "догматическое следование" ММИ может мешать использовать потенциал модели кластерного состояния или открытию другие квантовых вычислительных моделей в будущем.
2021-03-19 На канале YouTube выложен ролик "Беседы об эвереттике. Встреча третья. Взгляд из будущего" (https://www.youtube.com/watch?v=H2CR192bu2A )
2021-03-18 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 17 марта 2021 года представлена работа Шона М. Кэрролла (Sean M. Carroll) из Калифорнийского технологического института в Пасадене и Института Санта-Фе (США): «Реальность как вектор в Гильбертовом пространстве»); («Reality as a Vector in Hilbert Space»); (arXiv:2103.09780). Сам автор указывает, что он «защищает экстремистскую позицию», согласно которой фундаментальная онтология мира состоит из вектора в Гильбертовом пространстве, развивающегося по уравнению Шредингера. Законы физики определяются исключительно собственным спектром энергии гамильтониана. Структура нашего наблюдаемого мира, включая пространство и поля, живущие в нем, должна возникнуть как эмерджентное описание более высокого уровня. Ничто в этой перспективе не подразумевает, что мы должны думать о пространстве-времени или квантовых полях как о чем-то иллюзорном. Они эмерджентны, но от этого не менее реальны. Этот подход им же был назван “Бешеной собакой эвереттианизма” (Carroll & Singh, 2019; «Mad-Dog Everettianism: Quantum Mechanics at Its Most Minimal» (arXiv:1801.08132)). Подход Эверетта для автора — точка старта в развитии своей теории. Другие подходы требуют дополнительных динамических правил, физических структур или их комбинации. В конце статьи он отмечает, что это было слишком краткое обсуждение амбициозной исследовательской программы (которая, в конечном счете, может потерпеть неудачу).
2021-03-10 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 9 марта 2021 года представлена статья Густаво Родригеса Роша, Дина Риклза, Флориана Дж. Боге (Gustavo Rodrigues Rocha, Dean Rickles, Florian J. Boge) из Университета Эстадуаль-де-Фейра-де-Сантана (Бразилия), Сиднейского университета (Австралия), Вуппертальского университета (Германия), Исследовательского центра Валленберга при Стелленбошском университете (Южная Африка): «Краткий исторический взгляд на интерпретацию согласованных историй квантовой механики» («A Brief Historical Perspective on the Consistent Histories Interpretation of Quantum Mechanics»); (arXiv:2103.05280). В статье представлен обзор истории интерпретации квантовой механики в виде согласованных историй. Изложен формализм подхода согласованных историй. Обсуждаются работы Роберта Гриффитса и Ролана Омнеса. Основополагающая статья Гриффитса 1984 года, первого физика, предложившего интерпретацию согласованных историй квантовой механики, а затем статья Омнеса 1990 года, сыграли важную роль в модели согласованных историй, основанной на булевой логике. Описаны и оценены шаги Мюррея Гелл-Манна и Джеймса Хартла в их собственной версии подхода согласованных историй, мотивированной его перспективой в космологии. Это было основной мотивацией подхода Гелл-Манна и Хартла, поскольку они хотели интерпретации, пригодной для космологических приложений, в которых внешние измерения и наблюдатели не имеют смысла. Эта связь с квантовой космологией (и квантовой гравитацией), безусловно, привела к увеличению роли подхода согласованных историй, и в результате продолжают появляться новые разработки и приложения. В интерпретации согласованных историй нет особого значения, приписываемого измерению и наблюдению (и даже наблюдателям): они представляют собой просто еще один процесс, моделируемый в рамках формализма (авторы показали, как идеи кибернетики и идеи сложности обеспечили благоприятный исследовательский ландшафт для моделирования наблюдателей и их наблюдений). В частности отмечено, что Джеффри Барретт и Питер Бирн в своих комментариях по поводу обмена письмами между Эвереттом и Уилером, а также Эвереттом и Норбертом Винером справедливо указали на место смены поколений в интерпретации парадоксов квантовой механики: «Теория информации была отправной точкой для Эверетта … Эверетт думал об информации как о формальном понятии, которое может быть представлено в состоянии почти любой физической системы – в соответствии с его опытом в теории игр и новой науке — кибернетике. Возможно, именно поэтому Эверетт мог легко представить себе наблюдателя как сервомеханизм...».
2021-03-09 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 5 марта 2021 года представлена новая статья Саймона Сондерса (Simon Saunders): «Интерпретация Эверетта: Вероятность» («The Everett Interpretation: Probability»); (arXiv: 2103.03966). По мнению автора, многомировая Эвереттовская интерпретация квантовой механики (ММИ) естественно делится на две части: во-первых, интерпретация структуры квантового состояния в терминах ветвления и, во-вторых, интерпретация этой ветвящейся структуры в терминах вероятности. Представлен второй из двух обзоров ММИ, который фокусируется на вероятности (см. Саймон Сондерс (Simon Saunders): «Интерпретация Эверетта: Структура» («The Everett Interpretation: Structure»); arXiv:2103.01366). Автор считает, что все, кто серьезно относятся к ММИ, сходятся в одном: существует макроскопическая ветвящаяся структура волновой функции, и существуют квадраты амплитуд этих ветвей, веса ветвей. Ветви – это условно - миры, миры на какое-то время. Физическая вероятность возникает постольку, поскольку возникает ветвление. Если на самом деле существует макроскопическое ветвление, удовлетворяющее уравнению Шрёдингера, и нет скрытых переменных, неудивительно, что квантовую механику так трудно понять для тех (подавляющее большинство), которые стремятся к интерпретации одного мира. В отличие от этого, ни один из обычных парадоксов квантовой механики не представляет проблемы для интерпретации Эверетта: проблема измерения решена, появление нелокальности Белла объяснено, и никаких специальных предположений не требуется, помимо предположения, что уравнение Шрёдингера применимо ко всему.
2021-03-05 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 4 марта 2021 года представлена статья Джузеппе Кастаньоли (Giuseppe Castagnoli; giuseppe.castagnoli@gmail.com): «Квантово-механическое понятие ненаблюдаемой причинной петли и антропный принцип» («The quantum mechanical notion of unobservable causal loop and the anthropic principle»); (arXiv:2103.03173). Рассматриваются обратимые квантовые процессы между двумя взаимно коррелированными результатами измерений. Используется концепт ненаблюдаемой причинной петли: заключительное измерение изменяет назад во времени входное состояние унитарного преобразования. В предыдущих своих работах (Catagnoli, G.: Unobservable causal loops explain both the quantum com-putational speedup and quantum nonlocality. (Ненаблюдаемые причинные петли объясняют как квантовое вычислительное ускорение, так и квантовую нелокальность), аrXiv:2011.14680. 2021. Castagnoli, G., Cohen, E., Ekert, A. K., and Elitzur, A. C.: A Rela-tional Time-Symmetric Framework for Analyzing the Quantum Computational Speedup. (Относительная временно-симметричная структура для анализа скорости квантовых вычислений). Found Phys., 49, 10, 1200-1230. 2019) автор показал, что такие петли объясняют квантовое ускорение вычислений и квантовую нелокальность. Естественно, наличие каузальной петли может иметь далеко идущие последствия. В этом контексте объясняется наблюдаемое в настоящее время состояние Вселенной, включающее в себя разумную жизнь, соответствующие значения фундаментальных констант, настройка которых и делает возможной разумную жизнь. Возможно слияние понятия квантовой каузальной петли с понятием Джона Уилера о реальности, созданной наблюдателем. Согласно последнему, квантовый наблюдатель с помощью механизма эксперимента с отложенным выбором может создавать в начале Вселенной фундаментальные физические законы. Но это было бы похоже на изобретателя машины времени, который отправляет назад во времени к себе конструкцию машины, что нарушило бы временную симметрию, требуемую для описания обратимого квантового процесса, и, следовательно, было бы нефизичным. По предположению автора, мы должны заменить реальность, созданную наблюдателем Уилера, реальностью, которая для одной половины информации, определяющей ее, выбирается случайным образом среди всех возможных реальностей, а для другой половины создается наблюдателем. Это удовлетворяло бы рассматриваемой временной симметрии и могло бы быть физичным. Видение космологической квантовой причинной петли (в масштабах эволюции Вселенной) могло бы совпасть с интерпретацией многих миров квантовой механики Эверетта (ММИ). Если перед окончательным наблюдением/измерением Вселенная должна находиться в квантовой суперпозиции вселенных с фундаментальными константами, как совместимыми, так и несовместимыми с жизнью, перед окончательным измерением мы должны иметь параллельные вселенные ММИ. Возможно, заключительный акт наблюдения должен уменьшить количество параллельных вселенных до тех, которые совместимы с жизнью. В частности, дарвиновская эволюция со способностью к прогнозированию по механизму причинных петель, имела бы драматическое преимущество перед классической дарвиновской эволюцией. Реальность, частично созданная наблюдателем, могла бы дать научную основу идее Фритьофа Капры о сходстве между фундаментальными состояниями сознания, описанными восточными теософами, и нашим восприятием фундаментальных законов современной физики, а космологическая квантовая причинная петля может дать нечто похожее на концепцию вечного возвращения Фридриха Ницше.
2021-03-03 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 2 марта 2021 года представлена новая статья Саймона Сондерса (Simon Saunders): «Интерпретация Эверетта: Структура» («The Everett Interpretation: Structure»); (arXiv:2103.01366). По мнению автора, многомировая Эвереттовская интерпретация квантовой механики (ММИ) естественно делится на две части: во-первых, интерпретация структуры квантового состояния в терминах ветвления и, во-вторых, интерпретация этой ветвящейся структуры в терминах вероятности. Эта статья посвящена структурной интерпретации волновой функции, а не вероятностной интерпретации, которая является предметом другой, сопутствующей статьи (Saunders 2021). В частности, речь идет о структуре волновой функции, оформленной в терминах формализма квантовых историй. Аргументы о том, что картина мира, представленная ММИ, противоречит опыту, потому что мы не знаем о каком-либо ветвящемся процессе, подобны критике теории Коперника о том, что подвижность земли как реальный физический факт несовместима с общепринятой интерпретацией природы, потому что мы не чувствуем такого движения. Но есть и другое сравнение, еще более информативное, сравнение - с Дескартом: между идеей Эверетта о том, что все, что есть, есть соотнесенные состояния и корреляции, и идеей о том, что все, что есть, есть относительные расстояния и относительные скорости. Оба возвели принцип (принцип суперпозиции; принцип инерции) до универсального статуса; оба были переходными фигурами: ни один из них не мог показать на динамических основаниях, что такое суперпозиция миров, что такое инерционные движения. Оба умерли молодыми, их работа не была закончена. Каждый отстаивал свое мировоззрение одинаково: доказывая, что механическому существу, населяющему такую вселенную, мир будет казаться точно таким же, каким он представляется нам в известной вселенной. По оценке автора, ММИ, это единственная реалистическая интерпретация квантовой механики, которая существует. Но квантовая механика еще может уступить место более совершенной теории с совершенно иным набором идей. Новые открытия, как всегда, могут изменить все. Поэтому место Эверетта в истории остается неопределенным.
2021-02-18 Ведущий научный сотрудник МЦЭИ Ю.В.Никонов сообщает, что в архиве электронных препринтов 17 февраля 2021 года представлена новая статья Овидиу Кристинел Стойка (Ovidiu Cristinel Stoica) из Национального института физики и ядерной инженерии в Бухаресте (Румыния): «3D-пространство и предпочтительный базис не могут однозначно возникнуть из квантовой структуры» («3D-Space and the preferred basis cannot uniquely emerge from the quantum structure»); (arXiv:2102.08620). Автор задается вопросом: «Возможно ли, что существует только вектор состояния, а 3D-пространство, предпочтительный базис, предпочтительная факторизация Гильбертова пространства и все остальное однозначно вытекают из гамильтониана и вектора состояния?» В статье приводятся теоремы запрета (no-go теоремы), показывающие, что если такая предпочтительная структура-кандидат существует, то существует и бесконечно много физически различных структур того же вида. Эти теоремы затрагивают все минималистские теории, в которых единственными фундаментальными структурами являются вектор состояния и гамильтониан, независимо от того, предполагают ли они ветвление или редукцию вектора состояния, в частности, версию интерпретации Эверетта, выдвинутую Кэрроллом и Сингхом: "Бешеный пес Эвереттианизма" (S.M. Carroll and A. Singh. Mad-dog Everettianism: quantum mechanics at its most minimal. In What is Fundamental?, pages 95–104. Springer, 2019). Подобные подходы приводят к таким последствиям, как "пассивные" путешествия во времени и в альтернативных реальностях, реализуемые просто пассивными преобразованиями Гильбертова пространства. То есть, появляется принципиальная возможность путешествовать в альтернативных реальностях, а вектор состояния одинаково поддерживает бесконечно много физически различных альтернативных реальностей, и невозможно определить, какая из них «наиболее реальная»; в любое время есть вариант, в котором все прошлые и будущие состояния, а также “альтернативные миры”, не ограниченные мирами многомировой интерпретации (ММИ), являются “одновременными” с настоящим состоянием. В будущей статье автор собирается показать, что решение проблем ММИ зависит от теории разума, поскольку, например, вычислительная теория разума позволяет “моделируемым” паттернам, полученным путем унитарных преобразований “реальных” паттернов, иметь те же самые переживания, что и “реальные”. Поэтому, поскольку, по крайней мере, «подход Уоллеса, основанный на идее паттерна Деннета, а на самом деле оригинальная идея Эверетта» и последующие вариации посвящены вычислительной теории разума.
2021-02-15 На канале YouTube выложен ролик "Беседы об эвереттике. Встреча вторая." (https://www.youtube.com/watch?v=FACAGj7Y4MI&featu |