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Weinberg 2 has proposed a formalism for testing non-
linear extensions of quantum mechanics. In this frame-
work, there are nonlinear observables in addition to the
usual linear ones. Heuristically, the greater number of
observables suggests that there is more information in
the wave function than in the usual linear theory. This
in turn raises the possibility that the fictitious violation of
locality that occurs in the Einstein-Podolsky-Rosen
(EPR) experiment in linear quantum mechanics® might
become a real violation in the nonlinear theory. That is,
the EPR apparatus might be used to send instantaneous
signals.*

In this Letter I determine the constraints imposed
upon observables by the requirement that transmission
not occur in the EPR experiment. This leads to a
different treatment of separated systems than that origi-
nally proposed by Weinberg. I find that forbidding EPR
communication in nonlinear quantum mechanics neces-
sarily leads to another sort of unusual communication:
that between different branches of the wave function.’
Gisin®’ and Czachor® have also discussed EPR com-
munication in nonlinear quantum mechanics; their re-
sults are discussed at the end of the paper.

Consider two widely separated systems I and II. The
wave function is ¥;;, where the indices i and j refer to
the two systems, running over 1,...,M and 1,...,N,
respectively. At time ¢t=0 the wave function has been
prepared, with correlations between the two systems. At
some later time, an observable a;; will be measured in
the receiving system II. It is sufficient to consider ordi-

nary linear observables in system II. In the formalism of
Weinberg, linear observables are bilinear functions of ¥
and ¥*,

a“=\If,<’;Aj/‘If,-,, ¢))

with A4; a Hermitian matrix (repeated indices are
summed). At the receiving end I will therefore assume
that the usual idea of measurement applies. In system I,
a signal is sent by turning on a field e(z) which couples
to a (possibly nonlinear) observable a;(¥;;,¥{). For
simplicity, suppose that this is the whole Hamiltonian:

R, v, ¥8) =e(@ai(v;;,¥5) . )
This gives the equation of motion '+

day/dt = —ifan,h} , 3)
where the Poisson bracket is

da_09b da_0b 4)

b} = - .
la oV, o) v} 9V

It is sufficient to consider a weak field, integrating the
equation of motion to first order in €:

an(0) =an©) = ilan©),a; )} [ 'dr'ec). ()

In this framework, ' the expectation value of ay; is simply
the value of aj, and so the condition that the measure-
ment made in system II not depend on the field applied
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in system I is
{a”,al} =0. (6)

The Poisson bracket {a;,-} generates unitary rotations
on the second index of ¥;;. By considering all linear ob-
servables aj—that is, all Hermitian matrices A4;—the
condition (6) is precisely the statement that a(¥;;, ¥{)
is invariant under general unitary rotations of the second
index. Thus, this index must always be contracted be-
tween ¥ and ¥*, and a; is a function only of the density
matrix

Pl =2 Wi Wiy . (7
m
Now it is possible to go back and enlarge the set of ob-

servables in system II, subject to the no-signal condition
(6). The density matrices for systems I and II commute,

k.ol =0, (®)
where
pll=2w, vk, )

Thus, the no-signal condition allows observation of any
function apj of p”.

This is the first main result: Assuming only that the
observables include all the usual linear Hermitian ob-
servables, the necessary and sufficient condition for an
isolated system not to receive information via EPR corre-
lations is that all observables in the system depend only
on the density matrix for the system:

al=hl[zq’imwl’:‘m] . (10)

The observables proposed by Weinberg' for separated
systems,

al'=zhl(\l’im’\ylfm)’ (11)

are not of this form (except when linear) and therefore
allow EPR communication.

I now show that nonlinear observables of the form
(10) lead to unusual communication of another sort.
Consider a process involving four steps.

(1) A spin- % ion enters a Stern-Gerlach device, which
couples to the linear spin component {y|c?|y). In the
device the beam splits, a macroscopic observer notes the
direction taken, and then the two paths are rejoined.

(2) After the Stern-Gerlach device: If the observer
saw {y|o?|y) =1 he does nothing. If he saw {y|c’|y)
= — 1 he takes one of two actions: (a) nothing, or (b)
rotates the spin into the +1 direction with a magnetic
field coupled to the linear observable {y|c?|y).

(3) The ion enters a region of field coupled to the non-
linear observable’

— Lyl lwylo |y
hy=f Wl ) (12)
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(4) If the observer originally saw (y|c?®|y)=+ he
again measures the spin with a Stern-Gerlach device
coupled to the linear spin component (y|c*|y); other-
wise, he does nothing.

Now follow the evolution of the wave function ¥,
where the indices refer respectively to the ion and to the
observer. It is useful to focus on the two partial density
matrices

+) —
Pilk( )= E ‘I'im‘lfl:(kmv

mest

(13)
pilk(_)= Z q'im‘l’;:m s
mes-~
where S71 is the set of all observer states in which
(y|o3|y) =1 was seen, and S ~ is the set of all observer

states in which {(y|o?|y)=— % was seen. After step
(1),
4 _1+o? -y _1—0¢’ (
-1 -1 14
s °° 4 )

After step (2), action (a) leaves the density matrices
(14) unchanged, while action (b) gives rise to

o -1+te® o) _1+o' (15)
4 4
To study step (3) it is necessary to be precise about
the form of the nonlinear interaction. Here, the result of
the EPR analysis enters, requiring that the nonlinear ob-
servable (12), when extended to the two-system wave
function, must be a function only of the total p! and not
of the separate p“i). Note that one could arrange for
the ion to propagate a long distance between steps (2)
and (3), and then to be reflected back for step (4), mak-
ing it clear that the observer and ion are separated sys-
tems. Knowing the form (12) of 43 on pure states does
not fully determine it as a function of density matrices.
Rather,

hy=f, Trp[o'Tlrp'ol +f Trpla'fl)'c' , (16)
Trp Trp

with f1+ f,=f. Expanding out the sums in the density
matrices, there are cross terms between states in S+ and
S 7, which will lead to cross terms between the evolution
of different macroscopic states of the observer. It may
be that a particular ratio of | and f> is always present,
or it may be that there are independent fields which cou-
ple to each interaction.

It is convenient to analyze first the case that f| =f and
f2=0. The time 7 spent in the field, and the strength f
of the field, will be chosen to satisfy zf = + 7. The equa-
tions of motion in step (3) are then

d 1(x) (+) Tr lo_l
—%—=2if[p‘ * ,a']——"—T . a7
tp

This integrates easily to give the partial density matrices
after step (3). If action (a) was taken, these do not
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change,
i o1t+e®  jo_1=0’
7 7 (18)
while if action (b) was taken they become
1— 3 _ + 1
Pl = o (- 1+to (19)

4 4

Finally, in step (4), it follows from Eqgs. (18) and (19)
that if the observer measures the spin, he obtains + 5 if
action (a) was taken, and — + if action (b) was taken.
But the action and observation are in two different
branches of the wave function, in which the original spin
was measured to be — 3 and + T, respectively. The
method by which the choice of action is to be made has
not been discussed, and there are various interesting pos-
sibilities to contemplate, including classical and quantum
random-number generators. For the present purpose it is
sufficient to imagine that the observer has made some
firm choice prior to the experiment. If he then sees the
original spin as + 1, he does nothing but make a second
measurement, but the outcome depends on what he
would have done had he originally seen — +. In effect,
the apparatus reads the observer’s mind.

Note that in steps (1), (2), and (4), in which the ob-
server participates, only linear observables are involved,
and so the usual quantum-mechanical idea of measure-
ment has been used. The experiment has been designed
to produce no further bifurcation of the wave function,
so that by iterating steps (2), (3), and (4), and allowing
the two branches to switch roles, the observers in the two
branches of the wave function may exchange binary mes-
sages of arbitrary length. This is an Everett phone, in
contrast to the EPR phone designed above.

In the event that f, is nonzero, the coupling between
branches remains but the evolution and outcome are no
longer as simple for the particular setup above. It is con-
venient to alter the conditions of the experiment so as to
obtain a simple outcome. There are many ways to do
this. One is the following: action (a) is now to rotate
the field into the +2 direction, action (b) is now to ro-
tate the field into the —2 direction, the time interval is
tf2=n/~/2, and in step (4) it is the 2 component that is
measured. After step (3), if action (a) was taken at step
(2), the partial density matrices are

o 1+e® o _1to’
7 7 (20)
while if action (b) was taken they are
1— 2 _ + 3
pl=1-0 ) —1%o” QD

4 4
Again the observation made in step (4) depends on the
action taken in the other branch in step (2).

The alternative formulation of separated systems, Eq.
(11), allows the construction of an EPR phone, but at

first sight appears to be free of the Everett-phone
phenomenon. This is because the evolution for different
states of the observer, different m values, separates.
However, the form (11) is basis dependent, and it is not
clear how a basis is to be singled out. It is necessary to
give a prescription for choosing the basis in which Eq.
(11) holds. In order to forbid the Everett phone, it is
necessary that this basis never involve superpositions of
macroscopic systems (observers) in different states.

It is important now to note that the Everett phone may
not actually work in practice. I have ignored previous
branchings of the wave function, describing the macro-
scopic observer and apparatus as though they started in a
definite state, as would be acceptable in the linear
theory. However, the analysis of the Everett phone
shows this assumption to be self-inconsistent: The evolu-
tion of the wave function will be coupled to all other pos-
sible states. Thus, while the analysis does show that
branches are coupled to one another, practical communi-
cation between branches may be drowned out by the
coupling to all the other branches of the wave function of
the Universe.

Do the results imply that nonlinear quantum mechan-
ics is inconsistent, and thus “explain” the linearity of the
theory? ' Communication between branches of the wave
function seems even more bizarre than faster-than-light
communication and consequent loss of Lorentz invari-
ance, but it is not clear that it represents an actual incon-
sistency. It means that reduction of the wave function
never occurs, so that the standard Copenhagen interpre-
tation of quantum mechanics no longer applies. The
many-worlds interpretation of quantum mechanics® be-
comes the natural one, with communication between the
worlds now possible. I do not know whether this allows a
completely consistent interpretation of the nonlinear
theory—this is a far-reaching question—but can only
note that in the present thought experiments the evolu-
tion equations are mathematically consistent and allow a
consistent interpretation.

Gisin has argued that nonlinear quantum mechanics
leads to EPR communication, both in Weinberg’s
theory’ and more generally.® He assumes reduction of
the wave packet—that is, the projection postulate. As
we have seen, without the projection postulate EPR com-
munication need no longer occur,!! provided that the ob-
servables (11) for separated systems are replaced with
the form (10). Also, Czachor® shows by explicit calcula-
tion, using the form (11), that EPR communication
occurs in Weinberg’s theory.

To what extent do the results apply to more general
nonlinear quantum theories? Weinberg’s theory is rath-
er general, carrying over two main assumptions from the
linear theory. The first is that the equation of motion
can be put in the form (3). I have used this assumption
extensively. In particular, ‘“observables” have been
defined pragmatically, as any quantities which can be
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added to h(¥,¥*), Eq. (2). This assumption in any case
seems very well motivated, as it leads to the usual con-
nection between symmetries and conservation laws, and
aids in the interpretation in other ways. The second as-
sumption, which may be less well motivated, is that ob-
servables are homogeneous of degree (1,1) in ¥ and ¥*.
This played no role in the analysis of the EPR phone,
and only a minor role in the analysis of the Everett
phone (it allowed the separation of the space and spin
wave functions').

Finally, what are the experimental implications of
these results? It is important to note that communica-
tion between branches of the wave function invalidates
most previous attempts to analyze the experimental
consequences of nonlinearities, such as those in Refs. 1,
2, and 12. This is because these analyses ignore previous
branchings of the wave function and treat macroscopic
systems as though they begin in definite macroscopic
states. A complete analysis requires consideration of the
entire wave function of the Universe and is therefore
rather complicated. Naively, it would seem that non-
linear effects will be very much diluted by the enormous
number of branches, since the amplitude for any given
branch of the wave function is exceedingly small. This
leads to the discouraging conclusion that nonlinearities
could be of order 1 in a fundamental theory and yet the
effective nonlinearity measurable experimentally would
still be unobservably small.

If quantum nonlinearities are observed nonetheless,
the thought experiments described herein would seem to
be simple enough to carry out in practice, thereby deter-
mining which of EPR communication and Everett com-
munication is actually realized.
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