Натуральная система единиц Планка и обобщенная формула "золотой пропорции" Татаренко-Шпинадель-Газале.

А.О. Майборода

Часть І

В естественной системе единиц измерения Макса Планка, единица массы определяется следующим образом:

$$m_{P} = \sqrt{\frac{\hbar c}{G}}$$
 (1)

где

тр - планковская масса;

ħ - приведенная планковская постоянная;

G - гравитационная постоянная;

с - скорость света.

В релятивистской механике можно получить /2;3/ второе определение планковской массы:

$$m_{P} = \frac{m_{e}}{\sqrt{1 - \frac{v_{P}^{2}}{c^{2}}}}$$
 (2)

где

те - масса электрона;

с - скорость света;

 $v_{_{P}}\,$ - скорость электрона, при которой масса электрона становится равной планковской массе.

На основании (1) и (2) строится уравнение:

$$\sqrt{\frac{\hbar c}{G}} - \frac{m_e}{\sqrt{1 - \frac{v_p^2}{c^2}}} = 0$$
 (3)

Решение (3) относительно величины **с**, дает (для положительного значения **с**) следующее выражение:

$$c_{1} = \frac{\left(m_{e}^{2}G + \sqrt{m_{e}^{4}G^{2} + 4\nu_{p}^{2}\hbar^{2}}\right)}{2\hbar}$$
 (4)

Из (4) выводится так называемая константа конверсии сћ

$$c\hbar = \frac{\left(m_e^2 G + \sqrt{m_e^4 G^2 + 4v_P^2 \hbar^2}\right)}{2}$$
 (5)

Выражение (5) несложно преобразовать к следующему безразмерному виду

$$\frac{c}{v_{P}} = \frac{\frac{m_{e}^{2}G}{v_{P}\hbar} + \sqrt{\frac{m_{e}^{4}G^{2}}{v_{P}^{2}\hbar^{2}} + 4}}{2}$$
 (6)

Очевидно, что формула полученного безразмерного соотношения физических величин (6) тождественна обобщенному уравнению "золотой пропорции" /4;7/ Татаренко-Шпинадель-Газале

$$\Phi_{\tau} = \frac{\tau + \sqrt{\tau^2 + 4}}{2} \tag{7}$$

(где т - любое натуральное число),

так как алгебраически $\frac{m_e^2 G}{\nu_p \hbar}$ в (6) равно τ в (7), и, соответственно,

 $\frac{c}{v_{_{P}}}$ равно $\Phi_{_{\tau}}$, частным случаем, которого является знаменитое уравнение "золотой пропорции"

$$\Phi_{1} = \frac{1 + \sqrt{1 + 4}}{2} \tag{8}$$

Таким образом, мы показали, что уравнения так называемой "математики гармонии" /5;6/ непосредственно выводятся из соотношения физических величин современной физики, находящихся на стыке ее квантового и релятивистского разделов.

Часть II

Итак, открыто тождество отношения физических величин математической величине

$$\frac{\mathbf{C}}{\mathbf{V}_{\mathsf{P}}} = \Phi_{\mathsf{x}} \tag{9}$$

(где **X** обозначает неизвестное значение τ для данных конкретных значений **C** и $\nu_{\scriptscriptstyle P}$)

Рассмотрим теперь другое отношение физических величин, которое будем обозначать символом N

$$N = \frac{m_{P}}{m_{o}} \tag{10}$$

Среднее значение N равно $2,389514 \times 10^{22}$.

Используя безразмерную величину N, выражение (2) можно записать в таком виде

$$Nm_{e} - \frac{m_{e}}{\sqrt{1 - \frac{v_{p}^{2}}{c^{2}}}} = 0$$
 (11)

и затем упростить до следующего вида

$$N - \frac{1}{\sqrt{1 - \frac{v_p^2}{c^2}}} = 0 \tag{12}$$

Решение данного уравнения относительно ν_{P} приводит к выражению

$$v_{P} = \pm \sqrt{1 - \frac{1}{N^2}} c$$
 (13)

в котором отображается взаимосвязь ν_{P} со скоростью света C через величину N.

Преобразуем теперь выражение (12) относительно квадрата N

$$N^{2} = \frac{1}{1 - \frac{v_{P}^{2}}{c^{2}}}$$
 (14)

и затем возьмем обратное значение, что приводит к выражению

$$N^{-2} = 1 - \frac{v_{P}^{2}}{c^{2}}$$
 (15)

Но $\frac{V_P^2}{C^2}$ равно Φ_x^{-2} , на основании чего выводится следующее уравнение

$$N^{-2} + \Phi_{x}^{-2} = 1 \tag{16}$$

Это уравнение может быть представлено в виде, более наглядно раскрывающем взаимоотношения физических величин

$$\frac{m_{\rm e}^2}{m_{\rm p}^2} + \frac{v_{\rm p}^2}{c^2} = 1 \tag{17}$$

Часть III

Физическая интерпретация полученных результатов достаточно сложна, если осуществлять ее на базе парадигмы о неизменности физических констант или хотя бы их стабильности при уникальности нашей вселенной. Дело в том, что конкретная математическая величина Ф определяющая числовое значение конкретной физической константы N есть только одна из многих других подобных ей в бесконечной последовательности чисел Татаренко-Шпинадель-Газале Φ_{τ} , т.к. значение τ начинаются от единицы и простираются в бесконечность. Однако, если обратиться к гипотезе Поля Дирака о переменности физических величин /1/ и опытным астрофизическим данным группы Вебба /8/, то тогда не возникает проблем с интерпретацией данных, полученных в настоящем исследовании. Так же подходящей парадигмой может быть множественности вселенных модель (не только эвереттическая), в каждой из которых реализовано одно из числовых значений последовательности, порождаемой уравнением (7), при константности этих значений в каждой конкретной вселенной.

Поскольку приведенные соображения касаются и величины N, то выражение (16) следует переписать, представив его в новом виде для частного случая

$$N_x^{-2} + \Phi_x^{-2} = 1 \tag{18}$$

и в универсальном виде

$$N_{\tau}^{-2} + \Phi_{\tau}^{-2} = 1. \tag{19}$$

Следует заметить, что в физическом мире, обобщенное уравнение "золотой пропорции" представлено природой в непривычном для математиков виде — величина τ в формуле (7) имеет дробные значения. До настоящего времени математики не обращали внимания на числа Φ_{τ} такого вида и в этом аспекте обнаружение таких математически неактуальных видов чисел Φ_{τ} есть тоже своего рода открытие. Для сравнения в таблице 1 даны последовательности чисел заданные как целыми, так и дробными значениями τ .

Таблица 1

τ	Φ_{τ}	$\Phi_{\mathfrak{r}}^{^{-2}}$	N_{τ}^{-2}	N _τ	N_{τ}^{2}
5	5,192582	0,037088	0,962912	1,019076	1,038516
4	4,236068	0,055728	0,944272	1,029086	1,059017
3	3,302776	0,091673	0,908327	1,049250	1,100925
2	2,414214	0,171573	0,828427	1,098684	1,207107
1	1,618034	0,381966	0,618034	1,272020	1,618034
1/2	1,280776	0,609612	0,390388	1,600485	2,561553
1/3	1,180460	0,717624	0,282376	1,881856	3,541381
1/4	1,132782	0,779304	0,220696	2,128645	4,531129
1/5	1,104988	0,819002	0,180998	2,350519	5,524938
Х	Φ_{x}	0,99999	1,75138×10 ⁻⁴⁵	2,389514×10 ²²	5,709777×10 ⁴⁴
	•••	•••	•••		

Из выражения (19) следует, что, либо отношения физических величин $\frac{V_p^2}{c^2}$ эволюционируют, последовательно пробегая все возможные значения Φ_{τ} начиная с Φ_{τ} , либо существует множество вселенных (последовательных и/или параллельных), в каждой из которых отношения мировых констант задаются одним из значений приобретаемых Φ_{τ} , при разных величинах τ .

В качестве примера рассмотрим случай, когда в выражении (19) τ равно 1. При таком значении τ величина Φ_1^{-2} округленно равна 0,3819660, а величина $\frac{V_p^2}{c^2}$ или N_1^{-2} равна 0,6180340, т.е. равна Φ_1^{-1} . Соответственно Φ_1^{-1} пли Φ_1^{-1} . Соответственно Φ_1^{-1} пли Φ_1^{-1} .

В следующем выражении фиксируется еще одно свойство N:

$$\frac{\Phi_{\tau}}{N_{\tau}^{2}} = \tau. \tag{20}$$

В отношении безразмерной величины N_{\star} следует отметить ее вездесущность в мире физических величин при их выражении в планковских единицах массы, длины и времени:

$$\mathbf{r}_{e} = \alpha \mathbf{I}_{P} \mathbf{N}_{x} , \qquad (21)$$

$$\mathbf{a}_{0} = \boldsymbol{\alpha}^{-1} \mathbf{I}_{P} \mathbf{N}_{x} , \qquad (22)$$

$$t_{e} = \alpha t_{p} N_{x}, \qquad (23)$$

$$e = \pm \sqrt{\alpha N_x^2 G m_e^2}$$
 (24)

где r_e — классический радиус электрона; a_0 — радиус первой боровской орбиты электрона; t_e — время прохождения светом классического радиуса электрона; e — электрический заряд электрона; α — постоянная тонкой структуры (постоянная

Зоммерфельда);
$$I_{p}$$
 – длина Планка $\left(I_{p} = \sqrt{\frac{G\hbar}{c^{3}}}\right)$; t_{p} – время Планка

$$\left(t_{p} = \sqrt{\frac{G\hbar}{c^{5}}}\right)$$
. В аспекте проникновения физической величины N во

все остальные константы и ее обусловленность математической величиной Φ_{τ} можно утверждать важность формул (6), (9), (16), (17) и (20) для выяснения, в духе исканий П.А.Дирака, причин обретения физическими константами (в ходе эволюции вселенной) конкретных текущих числовых значений.

Так же, в рамках гипотезы дрейфа констант, на основании последовательности чисел тиз таблицы 1 можно предположить, что в далеком прошлом, в мире, предшествовавшем нашему миру, величина т, которая, в соответствии с (20), определяет величину N, была представлена последовательностью целых чисел. Это делало N микроскопической величиной и создавало вселенную с очень необычными законами природы. В этой протовселенной эволюция "констант" направлении шла В уменьшения значений последовательности направлении чисел τ В единицы, завершилось окончанием ряда целых чисел, и рождением нашей вселенной, в которой значения т дробные, а величина N разрослась до числа с 22 нулями. Таким образом, число Фидия Φ_{\perp} , с τ равной 1, оказалось в конце времен протовселенной и в самом начале рождения нашей.

Разумеется, предложенные интерпретации являются гипотезами. Следует предположить, что обсуждение работы, даст иные, не менее интересные варианты толкований физического смысла открытых взаимосвязей мира математических идей и физической реальности.

Часть IV

взаимосвязи физической величины обобщенными "золотыми пропорциями" дает основания надеяться на скорое существенное продвижение в решении давней проблемы теоретического определения и/или вывода значений физических констант в целом, и спектра масс элементарных частиц в частности. Возможно, данных, необходимых для этого, еще недостаточно, но все же есть смысл попытаться прояснить перспективы в этом направлении, например, проанализировать взаимосвязь Ф. отношениями масс протона, электрона и частицы с планковской массой. Обнаруженные взаимозависимости позволяют сделать это. Так, например, в выражении (3) на месте массы электрона m_e может быть подставлена масса любой другой частицы $\mathbf{m}_{_{\mathrm{C}}}$, движущейся со скоростью v_c :

$$\sqrt{\frac{\hbar c}{G}} - \frac{m_c}{\sqrt{1 - \frac{v_c^2}{c^2}}} = 0$$
 (25)

В результате решения уравнения и последующих преобразований, аналогичных для выражений следующих за уравнением (3), получаем, что

$$\frac{\mathbf{C}}{\mathbf{V}_{c}} = \Phi_{y} \tag{26}$$

На основании того, что

$$\mathbf{m}_{e} = \frac{\mathbf{m}_{P}}{N} \tag{27}$$

можно так же ввести величину Q

$$\mathbf{m}_{c} = \frac{\mathbf{m}_{P}}{\mathbf{Q}} \tag{28}$$

которая выражает отношение массы произвольно взятой корпускулы к планковской массе.

Каждая из величин N и Q связана с конкретным собственным числом Φ_{x} и Φ_{y} из последовательности порожденной Φ_{τ}

$$N = \sqrt{\frac{\Phi_{x}}{X}}$$
 (29)

$$Q = \sqrt{\frac{\Phi_{y}}{y}}$$
 (30)

В таком случае, если данные построения правильные, то структуру отношений масс произвольно взятой корпускулы и электрона можно отобразить в следующем виде, с отображением процедуры преобразований

$$\frac{m_{c}^{2}}{m_{e}^{2}} = \frac{N^{2}}{Q^{2}} = \frac{y}{\Phi_{y}} \frac{\Phi_{x}}{x} = \frac{y(x + \sqrt{x^{2} + 4})}{x(y + \sqrt{y^{2} + 4})}$$
(31)

и без таковой в чистом виде

$$\frac{\mathbf{m}_{c}}{\mathbf{m}_{e}} = \sqrt{\frac{\mathbf{y}\left(\mathbf{x} + \sqrt{\mathbf{x}^{2} + 4}\right)}{\mathbf{x}\left(\mathbf{y} + \sqrt{\mathbf{y}^{2} + 4}\right)}}$$
(32)

Возможны и другие варианты анализа соотношений физических величин с математическими. Например, для частицы с массой протона в отношении планковской массы

$$N m_{e} - \frac{B m_{e}}{\sqrt{1 - \frac{v_{PB}^{2}}{c^{2}}}} = 0$$
 (33)

где v_{PB}^2 есть скорость частицы, при которой ее масса равна планковской, а В равно 1836,152701(37) т.е. равно отношению масс протона и электрона, что после преобразований дает следующее уравнение

$$\frac{B^2}{N^2} + \frac{v_{PB}^2}{c^2} = 1 \tag{34}$$

и для частицы с массой электрона в отношении массы протона

$$B m_{e} - \frac{m_{e}}{\sqrt{1 - \frac{v_{B}^{2}}{c^{2}}}} = 0$$
 (35)

где v_B^2 есть скорость частицы, при которой ее масса равна массе протона.

Аналогично выражениям (34) и (35) можно построить уравнения, содержащие постоянную тонкой структуры α во взаимосвязи с другими безразмерными физическими величинами и уравнением обобщенной "золотой пропорции".

Возможно, связь Φ_{τ} с некоторой предельной по величине скоростью корпускул и соответствующей скорости *частотой* позволит переосмыслить и реанимировать постулат Дирака /1/ о необходимости введения естественных пределов "обрезания" интегралов, в виде "какой-нибудь конечной величины" в целях исключения бесконечности как верхнего предела интегрирования.

Дополнением к этому, может стать введение понятия о минимальных пределах скорости корпускул и частоты колебаний.

Как бы то ни было, обнаружение уравнений обобщенной "золотой пропорции" Татаренко-Шпинадель-Газале в уравнениях релятивисткой квантовой механики имеет мощный эвристический потенциал, который рано или поздно должен проявить себя в теоретической физике.

Литература

- 1. Дирак П.А.М. Пути физики. М.: Энергоиздат, 1983.
- 2. Майборода А.О. Открытие golden section в фундаментальных соотношениях физических величин. Международная конференция "Проблемы Гармонии, Симметрии и Золотого Сечения в Природе, Науке и Искусстве" 22-25 октября 2003 г. Винницкий государственный аграрный университет, Винница, Украина
- 3. Майборода А.О. Математика Golden Section как возможное основание релятивистской квантовой механики. Секция философских проблем науки, XLVI конференция Московского физико-технического института 28 29 ноября 2003 г.
- 4. Никитин A.B. О признании открытия A.A.Татаренко http://www.trinitas.ru/rus/doc/0016/001c/00161460.htm
- 5. Стахов А.П. Новая математика для живой природы: Гиперболические функции Фибоначчи и Люка Международная конференция "Проблемы Гармонии, Симметрии и Золотого Сечения в Природе, Науке и Искусстве" 22-25 октября 2003 г. Винницкий государственный аграрный университет, Винница, Украина
- 6. Стахов А.П. Новый тип элементарной математики Международная конференция "Проблемы Гармонии, Симметрии и Золотого Сечения в Природе, Науке и Искусстве" 22-25 октября 2003 г. Винницкий государственный аграрный университет, Винница, Украина
- 7. Татаренко А.А. На пороге первого тысячелетия полигармонии мира.— Международная конференция "Проблемы Гармонии, Симметрии и Золотого Сечения в Природе, Науке и Искусстве" 22-25 октября 2003 г. Винницкий государственный аграрный университет, Винница, Украина
- 8. J.K. Webb, M.T. Murphy, V.V. Flambaum, V.A. Dzuba, J.D. Barrow, C.W. Churchill, J.X. Prochaska, A.M. Wolfe. Further Evidence for Cosmological Evolution of the Fine Structure Constant. Astrophysics, abstract astro-ph/0012539